Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T16:29:40.116Z Has data issue: false hasContentIssue false

Hydrogen binding and diffusion in diamond

Published online by Cambridge University Press:  31 January 2011

S.P. Mehandru
Affiliation:
Chemistry Department, Case Western Reserve University, Cleveland, Ohio 44106
Alfred B. Anderson
Affiliation:
Chemistry Department, Case Western Reserve University, Cleveland, Ohio 44106
John C. Angus
Affiliation:
Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Get access

Abstract

We have investigated the binding and diffusion pathways for atomic hydrogen in diamond using the semiempirical atom superposition and electron delocalization molecular orbital (ASED-MO) theory. The bond-centered site has been found to be more stable than the tetrahedral and hexagonal interstitial sites due to the formation of a low-lying band-gap orbital which takes the promoted electron. A second hydrogen binds even more stably to the nearby antibonding site with additional stabilization of the now doubly occupied band gap orbital. The bond-centered hydrogen is predicted to migrate along the high-density (110) planes in the diamond lattice with an activation barrier of 1.9 eV. A carbon atom vacancy is found to attract interstitial H which bind to dangling orbitals on the surrounding C atoms. These bond strengths decrease as up to a maximum of four H atoms enters the vacancy. A hydrogen atom in a vacancy is found to increase the activation energy for vacancy migration.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sellschop, J. P. F., Abstracts of the Diamond Conference, Bristol, U.K., 1987, p. 45.Google Scholar
2.Sellschop, J. P F., Madiba, C. C. P., and Annegan, H. J., Abstracts of the Diamond Conference, Cambridge, U.K., 1979, p. 43.Google Scholar
3.Hamza, A.V., Kubiak, G. D., and Stulen, R. H., Surf. Sci. 237, 35 (1990).CrossRefGoogle Scholar
4.Runciman, W. A. and Carter, T., Solid State Commun. 9, 315 (1971).CrossRefGoogle Scholar
5.Woods, G. S. and Collins, A. T., J. Phys. Chem. Solids 44, 471 (1983).CrossRefGoogle Scholar
6.Davis, G., Collins, A. T., and Spear, P., Solid State Commun. 49, 433 (1984).Google Scholar
7.Brewer, L. H., Crowe, K. M., Gygax, F. N., and Schenck, A., in Muon Physics edited by Hughes, V. W. and Wu, C. S. (Academic Press, New York, 1975).Google Scholar
8.Holzschuh, E., Küindig, W.,Meier, P. F., Patterson, B. D., Sellschop, J. P. F., Stemmet, M. C., and Appel, H., Phys. Rev. A 25, 1272 (1982).CrossRefGoogle Scholar
9.Brewer, J. H., Crowe, K. M., Gygax, F. N., Johnson, R. F., Patterson, B. D., Fleming, D. G., and Schenck, A., Phys. Rev. Lett. 31,143 (1973).CrossRefGoogle Scholar
10.Patterson, B. D., Hintermann, A., Kündig, W., Meier, P. F., Waldner, F., Graf, H., Recknagel, E., Weidinger, A., and Wichert, Th.,Phys. Rev. Lett. 40, 1347 (1978).CrossRefGoogle Scholar
11.Holzschuh, E., Graf, H., Recknagel, E., Weidinger, A., Wichert, Th., and Meier, P. F., Phys. Rev. B 20, 4391 (1979).CrossRefGoogle Scholar
12.Kiefl, R. F., Schneider, J. W., Keller, H., Kündig, W., Odermatt, W.,Patterson, B. D., Blazey, K. W., Estle, T. L., and Rudaz, S. L., Phys. Rev. B 32, 530 (1985).CrossRefGoogle Scholar
13.Patterson, B. D., Holzschuh, E., Kündig, W., Meier, P. F., Odermatt, W., Sellschop, J. P. F., and Stemmet, M. C., Hyperfine Interact. 17–19, 605 (1984).CrossRefGoogle Scholar
14.Odermatt, W., Baumeler, H., Keller, H., Kündig, W., Patterson, B. D., Schneider, J. W., Sellschop, J. P. F., Stemmet, M. C., Cornell, S., and Spencer, D. P., Hyperfine Interact. 32, 583 (1986).CrossRefGoogle Scholar
15.Claxton, T. A., Evans, A., and Symons, M. C. R., J. Chem. Soc. Faraday Trans. 2, 82, 2031 (1986).CrossRefGoogle Scholar
16.Estle, T. L., Estriecher, S., and Marynick, D. S., Phys. Rev. Lett. 58, 1547 (1987).CrossRefGoogle Scholar
17.Briddon, P., Jones, R., and Lister, G. M. S., J. Phys. C 21, L1027 (1988).CrossRefGoogle Scholar
18.Estreicher, S., Phys. Rev. B 36, 9122 (1987).CrossRefGoogle Scholar
19.Chang, K. J. and Chadi, D. J., Phys. Rev. Lett. 62, 937 (1989).Google Scholar
20.Chang, K. J. and Chadi, D. J., Phys. Rev. B 40, 11644 (1989).CrossRefGoogle Scholar
21.Chang, K. J. and Chadi, D. J., Phys. Rev. B 42, 7651 (1990).CrossRefGoogle Scholar
22.Zhang, S. D., Jackson, W. B., and Chadi, D. J., Phys. Rev. Lett. 65, 2575 (1990).CrossRefGoogle Scholar
23.Van de Walle, C. G., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev.Lett. 60, 2761 (1988).CrossRefGoogle Scholar
24.Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
25.Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).Google Scholar
26.Angus, J. C., Buck, F. A., Sunkara, M., Groth, T. F., Hayman, C. C., and Gat, R., Mater. Res. Bull., 38 (October 1989).CrossRefGoogle Scholar
27.Spear, K. E., J. Am. Ceram. Soc. 72, 171 (1989).CrossRefGoogle Scholar
28.Landstrass, M. I. and Ravi, K.V., Appl. Phys. Lett. 55, 1391 (1989).Google Scholar
29.Landstrass, M. I. and Ravi, K. V., Appl. Phys. Lett. 55, 975 (1989).CrossRefGoogle Scholar
30.Anderson, A. B.., J. Chem. Phys. 62, 1187 (1975).CrossRefGoogle Scholar
31.Anderson, A. B., Grimes, R. W., and Hong, S. Y.J. Phys. Chem. 91, 4245 (1987).CrossRefGoogle Scholar
32.Mehandru, S.P. and Anderson, A. B., Carbon 28, 797 (1990).CrossRefGoogle Scholar
33.Mehandru, S. P. and Anderson, A. B., J. Mater. Res. 5, 2286 (1990).Google Scholar
34.Mehandru, S. P. and Anderson, A. B., Surf. Sci. 248, 369 (1991).CrossRefGoogle Scholar
35.Nath, K. and Anderson, A. B., Solid State Commun. 66,277 (1988).CrossRefGoogle Scholar
36.Nath, K. and Anderson, A. B., Phys. Rev. B 41, 5652 (1990).CrossRefGoogle Scholar
37.Coulson, C. A. and Kearsley, M. J., Proc. Roy. Soc. A 241, 433 (1957); R. A. Swalin, J. Phys. Chem. Solids 18, 290 (1961).Google Scholar
38.Clark, C. D. and Walker, J., Proc. Roy. Soc. A 334, 241 (1973).Google Scholar
39.Bernholc, J., Antonelli, A., Sole, T. M. Del, Bar-Yam, V., and Pantelides, S. T., Phys. Rev. Lett. 61, 2689 (1988).CrossRefGoogle Scholar
40.Swalin, R. A., J. Phys. Chem. Solids 18, 290 (1961).CrossRefGoogle Scholar