Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-15T20:56:55.888Z Has data issue: false hasContentIssue false

Hydrogen Absorption of Nanoscale Pd Particles Embedded in ZrO2 Matrix Prepared from Zr–Pd Amorphous Alloys

Published online by Cambridge University Press:  31 January 2011

Shin-Ichi Yamaura*
Affiliation:
Institute for Materials Research, Tohoku University, 2–1-1 Katahira, Aoba, Sendai 980–8577, Japan
Ken-Ichiro Sasamori
Affiliation:
Institute for Materials Research, Tohoku University, 2–1-1 Katahira, Aoba, Sendai 980–8577, Japan
Hisamichi Kimura
Affiliation:
Institute for Materials Research, Tohoku University, 2–1-1 Katahira, Aoba, Sendai 980–8577, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, 2–1-1 Katahira, Aoba, Sendai 980–8577, Japan
Yue Chang Zhang
Affiliation:
Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan
Yoshiaki Arata
Affiliation:
Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan
*
a)Address all correspondence to this author.
Get access

Abstract

Nanocomposite materials consisting of ZrO2 and Pd phases were prepared by heating the amorphous Zr65Pd35 alloy for 24 h at 553 K in air. The maximum hydrogen absorption amount is about 2.4 mass% (H2/Pd) at 323 K and 2.2 mass% (H2/Pd) at 423 K at hydrogen pressure of 1 MPa. The absorption amount of Pd nanoparticles in the nanocomposite is a few times larger than those for the bulk and powder Pd metals. The remarkable increase in the hydrogen absorption/desorption amounts seems to result from the isolated dispersion state of Pd nanoparticles in the ZrO2 phase containing a tremendously large interface area in the nanocomposite.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kimura, H.M., Inoue, A., and Masumoto, T., Mater. Lett. 14, 232 (1992).CrossRefGoogle Scholar
2.Kimura, H.M., Asami, K., Inoue, A., and Masumoto, T., Corros. Sci. 35, 909 (1993).CrossRefGoogle Scholar
3.Kimura, H.M., Inoue, A., Masumoto, T., and Itabashi, S., Sci. Rep. Res. Inst. Tohoku Univ. A–33, 183 (1986).Google Scholar
4.Inoue, A. and Kimura, H.M., J. Jpn. Inst. Light Met . 49, 214 (1999).CrossRefGoogle Scholar
5.Zuettel, A., Nuetzenadel, Ch., Schmid, G., Chartouni, D., and Schlapbach, L., J. Alloys Compd. 293–295, 472 (1999).CrossRefGoogle Scholar
6.Pundt, A., Sachs, C., Winter, M., Reetz, M.T., Fritsch, D., and Kirchheim, R., J. Alloys Compd. 293–295, 480 (1999).CrossRefGoogle Scholar
7.Salomons, E., Griessen, R., Groot, D.G. De, and Magerl, A., Europhys. Lett. 5, 449 (1988).CrossRefGoogle Scholar
8.Eastman, J.A., Thompson, L.J., and Kestel, B.J., Phys. Rev. B 48, 84 (1993).CrossRefGoogle Scholar
9.Song, M.Y., Int. J. Hydrogen Energy 20, 221 (1995).CrossRefGoogle Scholar
10.Spada, F.E., Bowman, R.C. Jr., and Cantrell, J.S., J. Less-Common Met. 129, 197 (1987).CrossRefGoogle Scholar
11.Wagner, J.E., Bowman, R.C. Jr., and Cantrell, J.S., J. Appl. Phys. 58, 4573 (1985).CrossRefGoogle Scholar
12.Maeland, A.J., J. Less-Common Met. 89, 173 (1983).CrossRefGoogle Scholar
13.Nevitt, M.V., Downey, J.W., and Morris, R.A., AIME Trans. 218, 1019 (1960).Google Scholar
14.Rotella, F.J., Flotow, H.E., Gruen, D.M., and Jorgensen, J.D., J. Chem. Phys. 79, 4522 (1983).CrossRefGoogle Scholar
15.Zavaliy, I.Y., Yelon, W.B., Zavalij, P.Y., Saldan, I.V., and Pecharsky, V.K., J. Alloys Compd. 309, 75 (2000).CrossRefGoogle Scholar
16.Zavaliy, I., Wojcik, G., Mlynarek, G., Saldan, I., Yartys, V., and Kopczyk, M., J. Alloys Compd. 314, 124 (2001).CrossRefGoogle Scholar
17.Paljevic, M. and Ban, Z., J. Less-Common Met. 105, 83 (1985).CrossRefGoogle Scholar
18.Huang, Y.C., Fujita, K., and Uchida, H., Bull. Jpn. Inst. Met. 18, 694 (1970).CrossRefGoogle Scholar
19.Lewis, A., The Palladium Hydrogen System (Academic Press, New York and London, United Kingdom, 1967).CrossRefGoogle Scholar
20.Frieske, H. and Wicke, E., Ber. Bunsen-Ges. Phys. Chem. 77, 48 (1973).CrossRefGoogle Scholar