Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T11:35:46.907Z Has data issue: false hasContentIssue false

Hydration-induced coupling of the excitonic state of Y2O3 with its phonon: Negative effect on the luminescence efficiency of Y2O3:Eu+3 nanophosphor

Published online by Cambridge University Press:  03 March 2011

A. Nayak
Affiliation:
Central Glass and Ceramic Research Institute, Kolkata—700 032, India
R. Sahoo
Affiliation:
Central Glass and Ceramic Research Institute, Kolkata—700 032, India
R. Debnath*
Affiliation:
Central Glass and Ceramic Research Institute, Kolkata—700 032, India
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Luminescence properties of a series of samples of Y2O3:Eu+3 red phosphor of particle sizes ranging from 50 to 300 nm were investigated as a function of time to decipher the long-standing mystery of the effect of reduction of particle size on the luminescence efficiency of the phosphor. The samples were found to lose luminescence efficiency and suffer a change in the excitation profile with time. Infrared studies showed that although the samples at their freshly prepared stage were almost free from contaminated water, on aging in air at room temperature, they absorbed the latter. The phenomenon of hydration-induced coupling of the excitonic state of Y2O3 with one of its Fu modes was detected in the case of the aged sample, which was shown to be instrumental in introducing newer nonradiative channels in the system. Because of larger surface-to-volume ratio, the effect was most pronounced in the case of nanocrystalline samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tao, Y., Zhao, G., Zhang, W., and Xia, S.: Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu+3 phosphors. Mater. Res. Bull. 32, 501 (1997).Google Scholar
2Tissue, B.M.: Synthesis and luminescence of lanthanide ion in nanoscale insulating host. Chem. Mater. 10, 2837 (1998).CrossRefGoogle Scholar
3Sharma, P.K., Jilavi, M.H., Nass, R., and Schmidt, H.: Tailoring of particle size from μm–nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria. J. Lumin. 82, 187 (1999).CrossRefGoogle Scholar
4Igarashi, T., Ihara, M., Kusunoki, T., and Ohno, K.: Relationship between optical properties and crystallinity of nanometer Y2O3:Eu+3 phosphor. Appl. Phys. Lett. 76, 1549 (2000).CrossRefGoogle Scholar
5Wakefield, G., Holland, E., Dobson, P.J., and Hutchison, J.L.: Luminescence properties of nanocrystalline Y2O3:Eu+3. Adv. Mater. 13, 1557 (2001).3.0.CO;2-W>CrossRefGoogle Scholar
6Schmechel, R., Winkler, H., Xao-Mao, L., Kennedy, M., Kolbe, M., Benker, A., Winterer, M., Fischer, R.A., Hann, H., and Seggern, H.V.: Photoluminescence properties of nanocrystalline Y2O3:Eu+3 indifferent environment. Scripta Mater. 44, 1213 (2001).CrossRefGoogle Scholar
7Dhanaraj, J., Jagannathan, R., Kutty, T.R.N., and Lu, C.H.: Photoluminescence characteristics of Y2O3:Eu+3 nanophosphors prepared using sol-gel thermolysis. J. Phys. Chem. B 105, 11098 (2001).CrossRefGoogle Scholar
8Song, H., Wang, J., Chen, B., Peng, H., and Lu, S.: Size-dependent electronic transition rates in cubic nanocrystalline europium doped yttria. Chem. Phys. Lett. 376, 1 (2003).CrossRefGoogle Scholar
9Wei-Wei, Z., Mei, X., Ping, Z. Wei, Min, Y., Ze-Ming, Q., Shang-Da, X., and Garapon, C.: Site-selective spectra and time resolved spectra of nanocrystalline Y2O3:Eu+3. Chem. Phys. Lett. 376, 318 (2003).CrossRefGoogle Scholar
10Hirai, T., Asada, Y., and Kamasawa, I.: Preparation of Y2O3:Eu+3 nanoparticles in reverse micellar systems and their photoluminescence properties. J. Colloid Interface Sci. 276, 339 (2004).CrossRefGoogle Scholar
11Jia, C-J., Sun, L-D., Luo, F., Jiang, X-C., Wei, L-H., and Yan, C-H.: Structural transfor-mation induced improved luminescence properties for LaVO4:Eu nanocrystal. Appl. Phys. Lett. 84, 5305 (2004).CrossRefGoogle Scholar
12Wang, J-W., Chang, Y-M., Chang, H-C., Lin, S-H., Huang, L-C. Lora, Kong, J-L., and Kang, M-W.: Local structure dependence of the charge transfer band in nanocrystalline Y2O3:Eu+3. Chem. Phys. Lett. 405, 314 (2005).CrossRefGoogle Scholar
13Jia, M., Zhang, J., Lu, S., Sun, J., Luo, Y., Ren, X., Song, H., and Wang, X.: UV excitation properties of Eu+3 at S6 site in bulk and nanocrystalline cubic Y2O3. Chem. Phys. Lett. 407, 124 (2005).Google Scholar
14Joffin, N., Dexpert-Ghys, J., Verelst, M., Baret, G., and Garcia, A.: The influence of microstructure on the luminescence properties of Y2O3:Eu+3, prepared by spray pyrolysis. J. Lumin. 113, 249 (2005).CrossRefGoogle Scholar
15Jung, K.Y., Lee, C.H., and Kang, Y.C.: Effect of surface area and crystal size on luminescent intensity of Y2O3:Eu+3 phosphor prepared by spray pyrolysis. Mater. Lett. 59, 2451 (2005).CrossRefGoogle Scholar
16Tanner, P.A.: Synthesis and luminescence of nano-insulators doped with lanthanide ions. J. Nanosci. Nanotechnol. 5, 1455 (2005).CrossRefGoogle ScholarPubMed
17Williams, D.K., Yuan, H., and Tissue, B.M.: Size dependence of the luminescence spectra and dynamics of Eu+3:Y2O3 nanocrystal. J. Lumin. 83–84, 297 (1999).CrossRefGoogle Scholar
18Tessari, G., Bettinelli, M., Speghini, A., Ajo, D., Pozza, G., Depero, L.E., Allieri, B., and Sanghaletti, L.: Synthesis and optical properties of nanosized powders: Lanthanide doped Y2O3. Appl. Surf. Sci. 144–145, 686 (1999).CrossRefGoogle Scholar
19Wang, J., Song, H., Sun, B., Ren, X., Chen, B., and Xu, W.: Light-induced luminescent enhancement and structural change in cubic nanocrystalline Y2O3:Tb. Chem. Phys. Lett. 379, 507 (2003).CrossRefGoogle Scholar
20Goldburt, E.T., Kulkarni, B., Bhargava, R.N., Taylor, J., and Libera, M.: Size dependent efficiency in Tb doped Y2O3 nanocrystalline phosphor. J. Lumin. 72–74, 190 (1997).CrossRefGoogle Scholar
21Dhanaraj, J., Jagannathan, R., and Trivedi, D.C.: Y2O2S:Eu+3 nanocrystals synthesis and luminescent properties. J. Mater. Chem. 13, 1778 (2003).CrossRefGoogle Scholar
22Zhang, K., Pradhan, A.K., Loutts, G.B., Roy, U.N., Cui, Y., and Burger, A.: Lu2O3:Eu+3 nanoparticles and processed ceramics: Structural and spectroscopic studies. J. Mater. Res. 19, 2714 (2004).CrossRefGoogle Scholar
23Pauling, L. and Sappel, M.D.: The crystal structure of bixbyite and the C-modification of the sesquioxides. Z. Krystallogr. 75, 128 (1930).CrossRefGoogle Scholar
24 JCPDS Powder Diffraction Data File No. 25-1200, International Center for Diffraction Data, Swarthmore, PA.Google Scholar
25Schaak, G. and Koningstein, J.A.: Phonon and electronic Raman spectra of cubic rare arth oxides and isomorphous yttrium oxide. J. Opt. Soc. Am. 60, 1110 (1970).CrossRefGoogle Scholar
26Bloor, D. and Dean, J.R.: Spectroscopy of rare earth oxide systems: I. Far infrared spectra of the rare earth sequioxides, cerium dioxide and nonstoichiometric praseodymium and terbium oxide. J. Phys. C: Solid State Phys. 5, 1237 (1972).CrossRefGoogle Scholar
27Jollet, F., Noguera, C., Thomson, N., Thromat, N., Gautier, M., and Durand, J.P.: Electronic structure of yttrium oxide. Phys. Rev. B 42, 7587 (1990).CrossRefGoogle ScholarPubMed
28Repelin, Y., Proust, C., Husson, E., and Beny, J.M.: Vibrational spectrscopy of the C-form of yttrium sesquioxide. J. Solid State Chem. 118, 163 (1995).CrossRefGoogle Scholar