Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T23:41:36.888Z Has data issue: false hasContentIssue false

Hot-press sintering and the properties of lanthanum-rich calcium lanthanum sulfide ceramic

Published online by Cambridge University Press:  03 March 2011

Ming Shyong Tsai
Affiliation:
Department of Materials Science and Engineering (Mat 32), National Cheng Kung University, Tainan, Taiwan, Republic of China
Min Hsiung Hon
Affiliation:
Department of Materials Science and Engineering (Mat 32), National Cheng Kung University, Tainan, Taiwan, Republic of China
Get access

Abstract

The lanthanum-rich calcium lanthanum sulfide (CLS) was formed by a carbonate coprecipitating method followed by sulfurizing in a CS2 atmosphere at 950 °C for 3 h sulfurization. This powder then was densified by hot-press sintering at the temperature range from 1050 to 1150 °C for 0.5-2 h. The sintered pellets were resulfurized in a CS2 atmosphere at 950 °C for 1 h to restore the sulfur loss. The pellet sintered at 1050 °C for 0.5 h with 1.3 mm thickness had about 46% transmission at 13 μm.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Saunders, K. J., Wong, T. Y., Hartnett, T. M., Tustison, R. W., and Gentilman, R. L., Proc. SPIE-Int. Soc. Opt. Eng. 683, 72 (1986).Google Scholar
2White, W. B., Chess, D., Chess, C. A., and Biggers, J. V., SPIE 297, 3843 (1981).Google Scholar
3Chess, D. L., Chess, C. A., Biggers, J. A., and White, W. B., J. Am. Ceram. Soc. 66, 1823 (1983).CrossRefGoogle Scholar
4Saunders, K. J. and Tustison, R. W., U.S. Patent 4619792, Oct. 28 (1986).Google Scholar
5Harris, D. C., Hills, M. E., Gentilman, R. L., Saunders, K. J., and Wong, T. Y., Adv. Ceram. Mater. 2 (1), 74σ78 (1987).CrossRefGoogle Scholar
6Gentilman, R. L., Dekosky, M. B., Wong, T. Y., Tustison, R. W., and Hills, M. E., Infrared Optical Materials VI, SPIE 929, 57 (1988).CrossRefGoogle Scholar
7Han, Y. and Akinc, M., J. Am. Ceram. Soc. 74, 28152819 (1991).CrossRefGoogle Scholar
8Wang, L. H., Hon, M. H., Huang, W. L., and Lin, W. Y., Ceram. Int. 18, 2733 (1992).CrossRefGoogle Scholar
9BesanÇon, P., Carre, D., Laruelle, P., and Flahaut, J., in Proc. 9th Rare Earth Research Conf., edited by Field, P. E. (1971) Vol 1 p. 113.Google Scholar
10Kumta, P. N. and Risbud, S. H., Mater. Sci. Eng. B2, 281286 (1989).CrossRefGoogle Scholar
11Kumta, P. N. and Risbud, S. H., Mater. Sci. Eng. B18, 260268 (1993).CrossRefGoogle Scholar
12Kumta, P. N., Dravid, V. P., and Risbud, S. H., Philos. Mag. B 68 (1), 6784 (1993).CrossRefGoogle Scholar
13Kumta, P. N. and Risbud, S. H., J. Mater. Res. 8, 13941410 (1993).CrossRefGoogle Scholar
14Kumta, P. N. and Risbud, S. H., J. Mater. Sci. 29, 11351158 (1994).CrossRefGoogle Scholar
15Tsai, M. S. and Hon, M. H., Scripta Metall. (revised).Google Scholar
16Tsai, M. S. and Hon, M. H., unpublished.Google Scholar
17Tsai, M. S. and Hon, M. H., Ceram. Int. (1994, in press).Google Scholar
18Tsai, M. S. and Hon, M. H., Mater. Sci. Eng. (1994, in press).Google Scholar
19Beaudry, B. J., Tschetter, M. J., Nakahara, J. F., Takeshita, T., and Gschneidner, K. A. Jr., Proceedings 6th Int. Conf. on Thermoelectric Energy Conversion, Arlington, TX, March 12–14 (1986), p. 20.Google Scholar
20Nakahara, J. F., Takeshita, T., Tschetter, M. J., Beaudry, B. J., and Gschneidner, K. A. Jr., J. Appl. Phys. 63 (7), 23312336 (1988).CrossRefGoogle Scholar
21Takeshita, T., Gschneidner, K. A. Jr., and Beaudry, B. J., J. Appl. Phys. 57 (10), 46334637 (1985).CrossRefGoogle Scholar
22Wood, C., Lockwood, A., Parker, J., Zoltan, A., Zoltan, D., Danielson, L. R., and Raag, V., J. Appl. Phys. 58 (4), 15421547 (1985).CrossRefGoogle Scholar