Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:11:03.717Z Has data issue: false hasContentIssue false

Honey and curcumin loaded multilayered polyvinylalcohol/cellulose acetate electrospun nanofibrous mat for wound healing

Published online by Cambridge University Press:  27 March 2020

Mrunalini K. Gaydhane*
Affiliation:
Creative and Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
Jaya S. Kanuganti
Affiliation:
Creative and Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
Chandra S. Sharma
Affiliation:
Creative and Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Bioactive dressings which can treat any kind of chronic or acute wounds and can fully replace the conventional gauzes and superabsorbent dressings have proven to be a future market of wound care products in recent times. These dressings are multifunctional, which can effectively combat the wound infection, remove the exudate, promote angiogenesis, and protect the wound from external trauma. Proper selection of bioactive and polymer defines its efficiency. Current research unveils the therapeutic efficacy of curcumin–honey-loaded multilayered polyvinyl alcohol/cellulose acetate electrospun nanofibrous mats as an interactive bioactive wound dressing material. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis infers uniform encapsulation and chemical compatibility of herbal actives and polymer, inside the nanofibrous layers. The as-spun mat shows potential resistance towards Escherichia coli and 90% antioxidant activity against diphenyl-picrylhydrazyl (DPPH)–free radical. Additionally, water absorbency, water vapor transmission rate, and wettability analysis show quick and excellent absorption with controlled transmission of wound exudate.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wild, T., Rahbarnia, A., Kellner, M., Sobotka, L., and Eberlein, T.: Basics in nutrition and wound healing. Nutrition 26, 862 (2010).CrossRefGoogle ScholarPubMed
Amir Qureshi, M., Khatoon, F., and Ahmed, S.: An overview on wounds their issues and natural remedies for wound healing. Biochem. Physiol.: Open Access 4, 1 (2015).CrossRefGoogle Scholar
Preem, L. and Kogermann, K.: Recent Clinical Techniques, Results, and Research in Wounds (Springer, Switzerland AG 2018); pp. 144.Google Scholar
Boateng, J. and Catanzano, O.: Advanced therapeutic dressings for effective wound healing—A review. J. Pharm. Sci. 104, 3653 (2015).CrossRefGoogle Scholar
Zahedi, P., Rezaeian, I., Ranaei-Siadat, S.O., Jafari, S.H., and Supaphol, P.: A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol. 21, 77 (2010).Google Scholar
Pilehvar-Soltanahmadi, Y., Akbarzadeh, A., Moazzez-Lalaklo, N., and Zarghami, N.: An update on clinical applications of electrospun nanofibers for skin bioengineering. Artif. Cells, Nanomed., Biotechnol. 44, 1 (2015).CrossRefGoogle ScholarPubMed
Zhong, W., Xing, M.M.Q., and Maibach, H.I.: Nanofibrous materials for wound care. Cutaneous Ocul. Toxicol. 29, 143 (2010).CrossRefGoogle ScholarPubMed
Andreu, V., Mendoza, G., Arruebo, M., and Irusta, S.: Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials 8, 5154 (2015).CrossRefGoogle ScholarPubMed
Said, S.S., Aloufy, A.K., El-Halfawy, O.M., Boraei, N.A., and El-Khordagui, L.K.: Antimicrobial PLGA ultrafine fibers: Interaction with wound bacteria. Eur. J. Pharm. Biopharm. 79, 108 (2011).CrossRefGoogle ScholarPubMed
Sjollema, J., Zaat, S.A.J., Fontaine, V., Ramstedt, M., Luginbuehl, R., Thevissen, K., Li, J., van der Mei, H.C., and Busscher, H.J.: In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomater. 70, 12 (2018).CrossRefGoogle ScholarPubMed
Cao, Y., Jana, S., Bowen, L., Tan, X., Liu, H., Rostami, N., Brown, J., Jakubovics, N.S., and Chen, J.: Hierarchical rose petal surfaces delay the early-stage bacterial biofilm growth. Langmuir 35, 14670 (2019).CrossRefGoogle ScholarPubMed
Wang, Y., Wei, T., Qu, Y., Zhou, Y., Zheng, Y., Huang, C., Zhang, Y., Yu, Q., and Chen, H.: Smart, photothermally activated, antibacterial surfaces with thermally triggered bacteria-releasing properties. ACS Appl. Mater. Interfaces (2019).Google ScholarPubMed
Kanani, A.G. and Bahrami, S.H.: Review on electrospun nanofibres scaffold and biomedical applications. Trends Biomater. Artif. Organs 24, 93 (2010).Google Scholar
Reneker, D.H., Yarin, A.L., Zussman, E., and Xu, H.: Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43 (2007).CrossRefGoogle Scholar
Ramakrishna, S., Fujihara, K., Teo, W.E., Ma, Z., and Lim, T.C.: Electrospinning and Nanofibers (World Scientific Publishing, Singapore, 2005).CrossRefGoogle Scholar
Doshi, J. and Reneker, D.H.: Electrospinning process and applications of electrospun fibers. In Conference Record 1993 IEEE Industry Applications Society Annual Meeting, Vol. 3 Institute of Electrical and Electronics Engineers (New Jersey, US, 1993); p. 1698.CrossRefGoogle Scholar
Motealleh, B., Zahedi, P., Rezaeian, I., Moghimi, M., Hossein, A., and Zarandi, M.A.: Morphology, drug release, antibacterial, cell proliferation, and histology studies of chamomile-loaded wound dressing mats based on electrospun nanofibrous poly(E-caprolactone)/polystyrene blends. J. Biomed. Mater. Res., Part B 102, 977 (2014).CrossRefGoogle Scholar
Maleki, H., Gharehaghaji, A.A., and Dijkstra, P.J.: A novel honey-based nanofibrous scaffold for wound dressing application. J. Appl. Polym. Sci. 127, 4086 (2013).CrossRefGoogle Scholar
Sarhan, W.A. and Azzazy, H.M.E.: High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects. Carbohydr. Polym. 122, 135 (2015).CrossRefGoogle ScholarPubMed
Jenkins, R., Wootton, M., Howe, R., and Cooper, R.: A demonstration of the susceptibility of clinical isolates obtained from cystic fibrosis patients to manuka honey. Arch. Microbiol. 197, 597 (2015).CrossRefGoogle ScholarPubMed
Kwakman, P.H.S. and Zaat, S.A.J.: Antibacterial components of honey. IUBMB Life 64, 48 (2012).CrossRefGoogle ScholarPubMed
Sun, X.Z., Williams, G.R., Hou, X.X., and Zhu, L.M.: Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydr. Polym. 94, 147 (2013).CrossRefGoogle ScholarPubMed
Suwantong, O., Opanasopit, P., Ruktanonchai, U., and Supaphol, P.: Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48, 7546 (2007).CrossRefGoogle Scholar
Mancuso, E., Tonda-Turo, C., Ceresa, C., Pensabene, V., Connell, S.D., Fracchia, L., and Gentile, P.: Potential of manuka honey as a natural polyelectrolyte to develop biomimetic nanostructured meshes with antimicrobial properties. Front. Bioeng. Biotechnol. 7, 1 (2019).CrossRefGoogle ScholarPubMed
Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T., and Eliceiri, K.W.: ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 18, 529 (2017).CrossRefGoogle ScholarPubMed
Kolev, T.M., Velcheva, E.A., Stamboliyska, B.A., and Spiteller, M.: DFT and experimental studies of the structure and vibrational spectra of curcumin. Int. J. Quantum Chem. 102, 1069 (2005).CrossRefGoogle Scholar
Mohan, P.R.K., Sreelakshmi, G., Muraleedharan, C.V., and Joseph, R.: Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc. 62, 77 (2012).CrossRefGoogle Scholar
Anjos, O., Campos, M.G., Ruiz, P.C., and Antunes, P.: Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 169, 218 (2015).CrossRefGoogle ScholarPubMed
Mansur, H.S., Sadahira, C.M., Souza, A.N., and Mansur, A.A.P.: FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C 28, 539 (2008).CrossRefGoogle Scholar
Khatri, Z., Arain, R.A., Jatoi, A.W., Mayakrishnan, G., Wei, K., and Kim, I.S.: Dyeing and characterization of cellulose nanofibers to improve color yields by dual padding method. Cellulose 20, 1469 (2013).CrossRefGoogle Scholar
UCLA college chemistry & biochemistry: IR table (2001). Available at: https://www.chem.ucla.edu/∼bacher/General/30BL/IR/ir.html (accessed November 13, 2019).Google Scholar
Adepu, S., Gaydhane, M.K., Kakunuri, M., Sharma, C.S., Khandelwal, M., and Eichhorn, S.J.: Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers. Appl. Surf. Sci. 426, 755 (2017).CrossRefGoogle Scholar
Nosonovsky, M.: Model for solid-liquid and solid-solid friction of rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007).CrossRefGoogle ScholarPubMed
Lafuma, A. and Quéré, D.: Superhydrophobic states. Nat. Mater. 2, 457 (2003).CrossRefGoogle ScholarPubMed
Yohe, S.T., Colson, Y.L., and Grinstaff, M.W.: Superhydrophobic materials for tunable drug release: Using displacement of air to control delivery rates. J. Am. Chem. Soc. 134, 2016 (2012).CrossRefGoogle ScholarPubMed
Saeed, S.M., Mirzadeh, H., Zandi, M., and Barzin, J.: Designing and fabrication of curcumin loaded PCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Prog. Biomater. 6, 39 (2017).CrossRefGoogle ScholarPubMed
Zahedi, P., Karami, Z., Rezaeian, I., Jafari, S., Mahdaviani, P., Abdolghaffari, A.H., and Abdollahi, M.: Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(ε-caprolactone) blends. J. Appl. Polym. Sci. 124, 4174 (2011).CrossRefGoogle Scholar
Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M., and Telser, J.: Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44 (2007).CrossRefGoogle ScholarPubMed
Lobo, V., Patil, A., Phatak, A., and Chandra, N.: Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4, 118 (2010).CrossRefGoogle ScholarPubMed
George, N.M. and Cutting, K.F.: Antibacterial honey (Medihoney™): In vitro activity against clinical isolates of MRSA, VRE, and other multiresistant gram-negative organisms including Pseudomonas aeruginosa. Wounds 19, 231236 (2007).Google ScholarPubMed
Estevinho, L., Pereira, A.P., Moreira, L., Dias, L.G., and Pereira, E.: Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol. 46, 3774 (2008).CrossRefGoogle ScholarPubMed
Jenkins, R. and Cooper, R.: Improving antibiotic activity against wound pathogens with manuka honey in vitro. PLoS One 7, e45600 (2012).CrossRefGoogle ScholarPubMed
El-Kased, R.F., Amer, R.I., Attia, D., and Elmazar, M.M.: Honey-based hydrogel: In vitro and comparative in vivo evaluation for burn wound healing. Sci. Rep. 7, 1 (2017).CrossRefGoogle ScholarPubMed
Korkela, H. and Pekkanen, T.J.: The testing of the antibiotic sensitivity of bacteria on an agar medium: The problem of a double zone of inhibition. Acta Pathol. Microbiol. Scand., Sect. B: Microbiol. 85, 174 (1977).Google ScholarPubMed
Behera, B., Yadav, D., and Sharma, M.C.: Antimicrobial assay of methanolic extract of holoptelea integrifolia bark (CHIRBILWA). Res. & Rev.: J. Microbiol. Biotechnol. 2, 8 (2013).Google Scholar
Sarhan, W.A., Azzazy, H.M.E., and El-Sherbiny, I.M.: Honey/chitosan nanofiber wound dressing enriched with allium sativum and cleome droserifolia: Enhanced antimicrobial and wound healing activity. ACS Appl. Mater. Interfaces 8, 6379 (2016).CrossRefGoogle ScholarPubMed
Tang, Y., Lan, X., Liang, C., Zhong, Z., Xie, R., Zhou, Y., Miao, X., Wang, H., and Wang, W.: Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydr. Polym. 219, 113 (2019).CrossRefGoogle ScholarPubMed
Yang, X., Fan, L., Ma, L., Wang, Y., Lin, S., Yu, F., Pan, X., Luo, G., Zhang, D., and Wang, H.: Green electrospun manuka honey/silk fibroin fibrous matrices as potential wound dressing. Mater. Des. 119, 76 (2017).CrossRefGoogle Scholar
Suwantong, O., Pankongadisak, P., Deachathai, S., and Supaphol, P.: Electrospun poly(L-lactic acid) fiber mats containing crude garcinia mangostana extracts for use as wound dressings. Polym. Bull. 71, 925 (2014).CrossRefGoogle Scholar
Kim, S.E., Heo, D.N., Lee, J.B., Kim, J.R., Park, S.H., Jeon, S.H., and Kwon, I.K.: Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater. 4, 044106 (2009).CrossRefGoogle ScholarPubMed
Adepu, S. and Khandelwal, M.: Broad-spectrum antimicrobial activity of bacterial cellulose silver nanocomposites with sustained release. J. Mater. Sci. 53, 1596 (2018).CrossRefGoogle Scholar