Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-05T04:22:00.521Z Has data issue: false hasContentIssue false

Homogeneous fabrication and densification of zirconia-toughened alumina (ZTA) composite by the surface-induced coating

Published online by Cambridge University Press:  31 January 2011

Hyun M. Jang
Affiliation:
Department of Materials Science and Metallurgy, Pohang Institute of Science and Technology (POSTECH), Pohang 790-600, Republic of Korea
Jong H. Moon
Affiliation:
Department of Materials Science and Metallurgy, Pohang Institute of Science and Technology (POSTECH), Pohang 790-600, Republic of Korea
Get access

Abstract

This article proposes a new scheme for fabricating homogeneous Al2O3–ZrO2 composite, in which a thermodynamic theory of interfacial electrochemical phenomena is applied. The theory predicts that a heterogeneous Al2O3 interface in colloidal dispersion can induce an enhanced concentration of the ionic species needed for a selective formation of the ZrO2 precursor at the Al2O3/aqueous solution interface. Based on this proposition, a homogeneous Al2O3–ZrO2 composite powder was fabricated by a surface-induced coating of the fine ZrO2 precursor on the kinetically stable colloid particles of Al2O3. The composite prepared by the surface-induced coating was characterized by a uniform spatial distribution of the dispersed ZrO2 phase and by the absence of large ZrO2 grains formed from hard ZrO2 agglomerates. The composite also showed highly uniform grain size distribution of both the dispersed ZrO2 and the matrix Al2O3 phases. The uniform grain size distribution of the matrix phase indicates that the homogeneous coating of the fine ZrO2 particles is effectively pinning the Al2O3 grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Garvie, R. C. and Hannink, R. H. J., Nature 258, 703 (1975).CrossRefGoogle Scholar
2Claussen, N., J. Am. Ceram. Soc. 59, 49 (1976).CrossRefGoogle Scholar
3Porter, D. L., Evans, A. G., and Heuer, A. H., Acta Metall. 27, 1649 (1979).CrossRefGoogle Scholar
4Evans, A. G. and Heuer, A. H., J. Am. Ceram. Soc. 63, 241 (1980).CrossRefGoogle Scholar
5Heuer, A. H., Claussen, N., Kriven, W. M., and Rühle, M., J. Am. Ceram. Soc. 65, 642 (1982).CrossRefGoogle Scholar
6Evans, A. G., in Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M., and Heuer, A. H. (American Ceramic Society, Columbus, OH, 1984), p. 193.Google Scholar
7Claussen, N., Steeb, J., and Pabst, R. F., Am. Ceram. Soc. Bull. 56, 559 (1977).Google Scholar
8Faber, K. T., in Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M., and Heuer, A. H. (American Ceramic Society, Columbus, OH, 1984), p. 293.Google Scholar
9Rühle, M., Claussen, N., and Heuer, A. H., J. Am. Ceram. Soc. 69, 195 (1986).CrossRefGoogle Scholar
10Claussen, N. and Rühle, M., in Advances in Ceramics, Vol. 3, Science and Technology of Zirconia, edited by Heuer, A. H. and Hobbs, L. W. (American Ceramic Society, Columbus, OH, 1981), p. 137.Google Scholar
11Evans, A. G., Burlingame, N., Drory, M., and Kriven, W. M., Acta Metall. 29, 447 (1981).CrossRefGoogle Scholar
12Lange, F. F. and Metcalf, M., J. Am. Ceram. Soc. 66, 398 (1983).CrossRefGoogle Scholar
13Aksay, I. A., Lange, F. F., and Davis, B. I., J. Am. Ceram. Soc. 66, C-60 (1985).Google Scholar
14Fegley, B., Jr., White, P., and Bowen, H. K., J. Am. Ceram. Soc. 68, C-60 (1985).CrossRefGoogle Scholar
15Baik, S., Bleier, A., and Becher, P. F., in Better Ceramics through Chemistry II, Mater. Res. Soc. Symp. Proc, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Materials Research Society, Pittsburgh, PA, 1986), Vol. 73, p. 791.Google Scholar
16Vold, R. D. and Vold, M. J., Colloid and Interface Chemistry (Addison-Wesley, Reading, MA, 1983), Chap. 8Google Scholar
17Furusawa, K. and Matsumoto, M., in Electrical Phenomena at Interfaces, edited by Kitahara, A. and Watanabe, A. (Marcel Dekker, New York, 1984), p. 225.Google Scholar
18Burke, J., The Kinetics of Phase Transformations in Metals (Pergamon Press, New York, 1965), Chap. 5.Google Scholar
19James, R. O. and Healy, T. W., J. Colloid Interface Sci. 40, 65 (1972).CrossRefGoogle Scholar
20Kinniburgh, D. G. and Jackson, M. L., in Adsorption of Inorganics at Solid-Liquid Interfaces, edited by Anderson, M. A. and Rubin, A. J. (Ann Arbor Science Pub., Ann Arbor, MI, 1981), p. 91.Google Scholar
21Jang, H. M. and Fuerstenau, D. W., Colloids and Surfaces 21, 235 (1986).CrossRefGoogle Scholar
22Srinivasan, R., Harris, M. B., Simpson, S. F., DeAngelis, R. J., and Davis, B. H., J. Mater. Res. 3, 787 (1988).CrossRefGoogle Scholar
23Wiese, G. R., James, R. O., and Healy, T. W., Disc. Faraday Soc. 52, 302 (1971).CrossRefGoogle Scholar
24Bérubé, Y. G. and de Bruyn, P. L., J. Colloid Interface Sci. 27, 305 (1968).CrossRefGoogle Scholar
25Wiersema, P. H., Loeb, A. L., and Overbeek, J.Th.G., J. Colloid Interface Sci. 22, 78 (1966).CrossRefGoogle Scholar
26Timasheff, S. N., J. Colloid Interface Sci. 21, 489 (1966).CrossRefGoogle Scholar
27Overbeek, J.Th. G., in Emergent Process Methods for High-Technology Ceramics, Materials Science Research, edited by Davis, R. F., Palmour, H., III, and Porter, R. L. (Plenum Press, New York and London, 1984), Vol. 17, p. 25.Google Scholar
28Underwood, E. E., in Quantitative Stereology (Addison-Wesley, Reading, MA, 1970), p. 109.Google Scholar
29Wurst, J. C. and Nelson, J. A., J. Am. Ceram. Soc. 55, 109 (1972).CrossRefGoogle Scholar
30Clark, D. E. and Lannutti, J. J., in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L. L. and Ulrich, D. R. (John Wiley & Sons, Inc., New York, 1984), p. 126.Google Scholar
31Pavia, D. L., Lampman, G. M., and Kriz, G. S., Jr., Introduction to Spectroscopy (W. B. Saunders, Philadelphia, PA, 1979), Chap. 2.Google Scholar
32Lange, F. F., J. Mater. Sci. 17, 225 (1982).CrossRefGoogle Scholar