Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T20:57:05.678Z Has data issue: false hasContentIssue false

Homogeneity of the superplastic Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass

Published online by Cambridge University Press:  31 January 2011

Qing-Ping Cao
Affiliation:
International Center for New-Structured Materials, Zhejiang University and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
Kazuhiro Hono
Affiliation:
National Institute for Materials Science, Tsukuba 305-0047, Japan
Ulla Vainio
Affiliation:
HASYLAB at DESY, Hamburg D-22607, Germany
Ute Kaiser
Affiliation:
Electron Microscopy Group of Materials Science, Ulm University, Ulm D-89069, Germany
Jian-Zhong Jiang*
Affiliation:
International Center for New-Structured Materials, Zhejiang University and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A recent report on the “room temperature superplasticity” in the Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass [Y.H. Liu et al., Science315, 1385 (2007)] was ascribed to the distinctive micrometer-sized structural heterogeneity. To verify the microstructure in this alloy, transmission electron microscopy (TEM) and anomalous small-angle x-ray scattering experiments were conducted. The results show that no micrometer-sized or nanometer-sized structural heterogeneities can be found. The micrometer-sized dark and bright regions that were previously reported as the reason for the plasticity are artifacts caused by TEM specimen preparation, rather than the intrinsic structure feature of this alloy. This finding is important for further studying the unique properties of this alloy.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
2.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
3.Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
4.Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
5.Fan, C., Ott, R.T., and Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).CrossRefGoogle Scholar
6.Wada, T., Inoue, A., and Greer, A.L.: Enhancement of roomtemperature plasticity in a bulk metallic glass by finely dispersed porosity. Appl. Phys. Lett. 86, 251907 (2005).CrossRefGoogle Scholar
7.Lee, M.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass. Acta Mater. 52, 4121 (2004).CrossRefGoogle Scholar
8.Wang, X.D., Yang, L., Jiang, J.Z., Saksl, K., Franz, H., Fecht, H.J., Liu, Y.G., and Xie, H.S.: Enhancement of plasticity in Zr-based bulk metallic glasses. J. Mater. Res. 22, 2454 (2007).CrossRefGoogle Scholar
9.Kim, Y.C., Na, J.H., Park, J.M., Kim, D.H., Lee, J.K., and Kim, W.T.: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 (2003).CrossRefGoogle Scholar
10. J.Das, Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).Google Scholar
11.Lee, S.W., Huh, M.Y., Fleury, E., and Lee, J.C.: Crystallizationinduced plasticity of Cu-Zr containing bulk amorphous alloys. Acta Mater. 54, 349 (2006).CrossRefGoogle Scholar
12.Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle ScholarPubMed
13.Chen, L.Y., Fu, Z.D., Zhang, G.Q., Hao, X.P., Jiang, Q.K., Franz, H., Liu, Y.G., Xie, H.S., Zhang, S.L., Wang, B.Y., Zeng, Y.W., and Jiang, J.Z.: New class of plastic bulk metallic glass. Phys. Rev. Lett. 100, 075501 (2008).CrossRefGoogle ScholarPubMed
14.Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).CrossRefGoogle ScholarPubMed
15.Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007).CrossRefGoogle ScholarPubMed
16.Chen, L.Y., Setyawan, A.D., Kato, H., Inoue, A., Zhang, G.Q., Saida, J., Wang, X.D., and Jiang, J.Z.: Free-volume-induced enhancement of plasticity in a monolithic bulk metallic glass at room temperature. Scr. Mater. 59, 75 (2008).CrossRefGoogle Scholar
17.Chen, L.Y., Ge, Q., Qu, S., Jiang, Q.K., Nie, X.P., and Jiang, J.Z.: Achieving large macroscopic compressive plastic deformation and work-hardening-like behavior in a monolithic bulk metallic glass by tailoring stress distribution. Appl. Phys. Lett. 92, 211905 (2008).CrossRefGoogle Scholar
18.Saida, J., Setyawan, A.D.H., Kato, H., and Inoue, A.: Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 (2005).CrossRefGoogle Scholar
19.Lee, S.W., Huh, M.Y., Chae, S.W., and Lee, J.C.: Mechanism of the deformation-induced nanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression. Scr. Mater. 54, 1439 (2006).CrossRefGoogle Scholar
20.Zhang, Y., Wang, W.H., and Greer, A.L.: Making metallic glasses plastic by control of residual stress. Nat. Mater. 5, 857 (2006).CrossRefGoogle ScholarPubMed
21.Kumar, G., Ohkubo, T., Mukai, T., and Hono, K.: Plasticity and microstructure of Zr–Cu–Al bulk metallic glasses. Scr. Mater. 57, 173 (2007).CrossRefGoogle Scholar
22.Setyawan, A.D., Kato, H., Saida, J., and Inoue, A.: Phase transformation behaviour in continuously cooled Zr65Al7.5Ni10Cu17.5-x Pdx (x = 0–17.5) glass-forming alloys and consequences for structure and property control. Philos. Mag. 88, 1125 (2005).CrossRefGoogle Scholar
23.Park, J.M., Kim, D.H., Kim, K.B., Fleury, E., Lee, M.H., Kim, W.T., and Eckert, J.: Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni–Ta bulk glassy alloy via introducing the structural inhomogeneity. J. Mater. Res. 23, 2984 (2008).CrossRefGoogle Scholar
24.Mondal, K., Kumar, G., Ohkubo, T., Oishi, K., Mukai, T., and Hono, K.: Large apparent compressive strain of metallic glasses. Philos. Mag. Lett. 87, 625 (2007).CrossRefGoogle Scholar
25.Mondal, K. and Hono, K.: Geometry constrained plasticity of bulk metallic glass. Mater. Trans. 50, 152 (2009).CrossRefGoogle Scholar
26.Cao, Q.P., Li, J.F., Zhou, Y.H., Horsewell, A., and Jiang, J.Z.: Effect of rolling deformation on the microstructure of bulk Cu60Zr20Ti20 metallic glass and its crystallization. Acta Mater. 54, 4373 (2006).CrossRefGoogle Scholar
27.Sun, B.B., Wang, Y.B., Wen, J., Yang, H., Sui, M.L., Wang, J.Q., and Ma, E.: Artifacts induced in metallic glasses during TEM sample preparation. Scr. Mater. 53, 805 (2005).CrossRefGoogle Scholar
28.Chang, H.J., Park, E.S., Yim, Y.C., and Kim, D.H.: Observation of artifact-free amorphous structure in Cu-Zr-based alloy using transmission electron microscopy. Mater. Sci. Eng., A 406, 119 (2005).CrossRefGoogle Scholar
29.Aziz, M.J.: Nanoscale morphology control using ion beams, in Ion Beam Science: Solved and Unsolved Problems, edited by Sigmund, P. (Royal Danish Academy, Copenhagen, 2006), p. 187.Google Scholar
30.George, H.B.: Ion-stimulated mass transport in nanoscale morphology evolution. Ph.D. Thesis, Harvard University, 2007, pp. 16, 113–119.Google Scholar
31.Simon, J.P. and Lyon, O.: Anomalous small angle x-ray scattering in materials science, in Resonant Anomalous X-ray Scattering, edited by Materlik, G., Sparks, C.J., and Fischer, K. (Elsevier Science, North-Holland, 1994), pp. 305322.Google Scholar
32.Haubold, H.G., Gruenhagen, K., Wagener, M., Jungbluth, H., Heer, H., Pfeil, A., Rongen, H., Brandenberg, G., Moeller, R., Matzerath, J., Hiller, P., and Halling, H.: JUSIFA—A new userdepicted ASAXS beamline for materials science. Rev. Sci. Instrum. 60, 1943 (1989).CrossRefGoogle Scholar