Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T11:47:23.027Z Has data issue: false hasContentIssue false

Hollow Mesoporous Spheres with Cubic Pore Network as a Potential Carrier for Drug Storage and its In Vitro Release Kinetics

Published online by Cambridge University Press:  03 March 2011

Yu-Fang Zhu
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Jian-Lin Shi*
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Yong-Sheng Li
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Hang-Rong Chen
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Wei-Hua Shen
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Xiao-Ping Dong
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The hollow mesoporous spheres (HMS) with cubic pore network have been synthesized via a simple two-step method. Two drugs of different molecules size, Aspirin and Gentamicin, were tested by one simple adsorption process. Up to 336 mg Aspirin molecules can be stored in 1.0 g HMS, while Gentamicin molecules of much larger size are much more difficult to be introduced into the pore channels of HMS. The same results can be obtained by using MCM-48 and MCM-41 as comparative mesoporous carriers. The HMS shows significantly higher storage amount of Aspirin than conventional MCM-48 and MCM-41 due to its hollow core structure. The release process of HMS-Aspirin, MCM-48-Aspirin and MCM-41-Aspirin are found to have a sustained-release property and follow a Fickian diffusion mechanism. Moreover, the HMS is suitable for storage of drug molecules of much smaller size.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. and Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template. Nature 359, 710 (1992).Google Scholar
2Zhang, W.H., Lu, J., Han, B., Li, M., Xiu, J., Ying, P. and Li, C.: Direct synthesis and characterization of titanium-substituted mesoporous molecular sieve SBA-15. Chem. Mater. 14, 3413 (2002).Google Scholar
3Zhang, L.X., Zhang, W.H., Shi, J.L., Hua, Z.L., Li, Y.S. and Yan, J.N.: A new thioether functionalized organic-inorganic mesoporous composite as highly selective and capacious Hg2+ adsorbent. Chem. Commun. 2, 210 (2003).CrossRefGoogle Scholar
4Yang, C., Sheu, H. and Chao, K.: Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48. Adv. Funct. Mater. 12, 143 (2002).3.0.CO;2-A>CrossRefGoogle Scholar
5Tanev, P.T., Chibwe, M. and Pinnavaia, T.J.: Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368, 321 (1994).CrossRefGoogle ScholarPubMed
6Schacht, S., Huo, Q., Voigt-Martin, I.G., Stucky, G.D. and Schuth, F.: Oil-water interface templating of mesoporous macroscale structures. Science 273, 768 (1996).Google Scholar
7Lin, H-P. and Mou, C-Y.: “Tubules-within-a-tubule” hierarchical order of mesoporous molecular sieves in MCM-41. Science 273, 765 (1996).Google Scholar
8Yang, P., Zhao, D., Chmelka, B.F. and Stucky, G.D.: Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem. Mater. 10, 2033 (1998).Google Scholar
9Huang, H., Remsen, E.E., Kowalewski, T. and Wooley, K.L.: Nanocages derived from shell cross-linked micelle templates. J. Am. Chem. Soc. 121, 3805 (1999).CrossRefGoogle Scholar
10Lin, H-P., Cheng, Y-R. and Mou, C-Y.: Hierarchical order in hollow spheres of mesoporous silicates. Chem. Mater. 10, 3772 (1998).CrossRefGoogle Scholar
11Zhu, G., Qiu, S., Terasaki, O. and Wei, Y.: Polystyrene bead-assisted self-assembly of microstructured silica hollow spheres in highly alkaline media. J. Am. Chem. Soc. 123, 7723 (2001).Google Scholar
12Li, W., Sha, X., Dong, W. and Wang, Z.: Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion. Chem. Commun. 20, 2434 (2002).Google Scholar
13Yu, C., Tian, B., Fan, J., Stucky, G.D. and Zhao, D.: Synthesis of siliceous hollow spheres with ultra large mesopore wall structures by reverse emulsion templating. Chem. Lett. 1, 62 (2002).CrossRefGoogle Scholar
14Ottaviani, M.F., Mollo, L. and Fubini, B.: Use of nitroxides as topological monitors of the interaction of silica-based particles with components of the biological environment. J. Colloid Interface Sci. 191, 154 (1997).Google Scholar
15Vallet-Regí, M., Rámila, A., Real, R.P. del and Pérez-Pariente, J.: A new property of MCM-41: Drug delivery system. Chem. Mater. 13, 308 (2001).CrossRefGoogle Scholar
16Hata, H., Saeki, S., Kimura, T., Sugahara, Y. and Kuroda, K.: Adsorption of taxol into ordered mesoporous silicas with various pore diameters. Chem. Mater. 11, 1110 (1999).CrossRefGoogle Scholar
17Tourné-Péteilh, C., Lerner, D.A., Charnay, C., Nicole, L., Bégu, S. and Devoisselle, J-M.: The potential of ordered mesoporous silica for the storage of drugs: The example of a pentapeptide encapsulated in a MSU-Tween 80. Chem. Phys. Chem. 3, 281 (2003).CrossRefGoogle Scholar
18Fisher, A.K., Huddersman, K.D. and Taylor, M.J.: Comparison of micro- and mesoporous inorganic materials in the uptake and release of the drug model fluorescein and its analogues. Eur. J. Chem. 9, 5873 (2003).Google Scholar
19Rámila, A., Muñoz, B., Pérez-Pariente, J. and Vallet-Regíi, M.: Mesoporous MCM-41 as drug host system. J. Sol-Gel Sci. Technol. 26, 1199 (2003).Google Scholar
20Muñoz, B., Rámila, A., Pérez-Pariente, J., Díaz, I. and Vallet-Regí, M.: MCM-41 organic modification as drug delivery rate regulator. Chem. Mater. 15, 500 (2003).CrossRefGoogle Scholar
21Tourné-Péteilh, C., Brunel, D., Bégu, S., Chicle, B., Fajula, F., Lerner, D.A. and Devoisselle, J-M.: Synthesis and characterization of ibuprofen-anchored MCM-41 silica and silica gel. N. J. Chem. 27, 1415 (2003).Google Scholar
22Lai, C-Y., Trewyn, B.G., Jeftinija, D.M., Jeftinija, K., Xu, S., Jeftinija, S. and Lin, V.S-Y.: A mesoporous silica nanosphere-based carrier system with chmically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug moleculed. J. Am. Chem. Soc. 125, 4451 (2003).Google Scholar
23Kortesuo, P., Ahola, M., Kangas, M., Kangasniemi, I., Yli-Urpo, A. and Kiesvaara, J.: In vitro evaluation of sol-gel processed spray dried silica gel microspheres as carrier in controlled drug delivery. Int. J. Pharm. 200, 223 (2000).CrossRefGoogle ScholarPubMed
24Kursawe, M., Glaubitt, W. and Thierauf, A.: Biodegradable silica fibers from sols. J. Sol-Gel Sci. Technol. 13, 267 (1998).Google Scholar
25Czuryszkiewicz, T., Ahvenlammi, J., Kortesuo, P., Ahola, M., Kleitz, F., Jokinen, M., Linden, M. and Rosenholm, J.B.: Drug release from biodegradable silica fibers. J. Non-Cryst. Solids 306, 1 (2002).Google Scholar
26Li, Y., Shi, J., Hua, Z., Chen, H., Ruan, M. and Yan, D.: Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrethermal stability. Nano Lett. 3, 609 (2003).CrossRefGoogle Scholar
27Xu, J., Luan, Z., He, H., Zhou, W. and Kevan, L.: A reliable synthesis of cubic mesoporous MCM-48 molecular sieve. Chem. Mater. 10, 3690 (1998).CrossRefGoogle Scholar
28Zhang, W-H., Shi, J-L., Wang, L-Z. and Yan, D-S.: Preparation and characterization of ZnO clusters inside mesoporous silica. Chem. Mater. 12, 1408 (2000).Google Scholar
29Andreopoulos, A.G., Hatzi, E. and Doxastakis, M.: Controlled release of salicylic acid from poly(D, L-lactide). J. Mater. Sci.: Mater. Med. 12, 233 (2001).Google ScholarPubMed
30Korsmeyer, R.W., Gurny, R., Doelker, E., Buri, P. and Peppas, N.A.: Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 15, 25 (1983).Google Scholar
31Peppas, N.A.: Analysis of fickian and non-fickian drug release from polymers. Pharm. Acta Helv. 60, 110 (1985).Google ScholarPubMed
32Schliecker, G., Schmiddt, C., Fuchs, S., Ehinger, A., Sandow, J. and Kissel, T.: In vitro and in vivo correlation of buserelin release from biodegradable implants using statistical moment analysis. J. Controlled Release 94, 25 (2004).CrossRefGoogle ScholarPubMed
33Kim, S.S., Zhang, W. and Pinnavaia, T.J.: Ultrastable mesostructured silica vesicles. Science 282, 1302 (1998).CrossRefGoogle ScholarPubMed
34Horcajada, P., Rámila, A., Diaz, I., Pérez-Pariente, J. and Vallet-Regí, M.: Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater. 68, 105 (2004).Google Scholar
35Okumura, M., Tsubota, S., Iwamoto, M. and Haruta, M.: Chemical vapor deposition of gold nanoparticles on MCM-41 and their catalytic activities for the low-temperature oxidation of CO and of H2. Chem. Lett. 4, 315 (1998).Google Scholar
36Zhao, X.G., Shi, J.L., Hu, B., Zhang, L.X. and Hua, Z.L.: Confinement of Cd3P2 nanoparticles inside ordered pore channels in mesoporous silica. J. Mater. Chem. 13, 399 (2003).CrossRefGoogle Scholar