Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T02:54:22.316Z Has data issue: false hasContentIssue false

High-temperature Thermoelectric Properties of the Ca1-xBixMnO3 System

Published online by Cambridge University Press:  31 January 2011

Gaojie Xu
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1–8-31 Midorigaoka, Ikeda, Osaka 563–8577, Japan
Ryoji Funahashi*
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1–8-31 Midorigaoka, Ikeda, Osaka 563–8577, Japan
Ichiro Matsubara
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1–8-31 Midorigaoka, Ikeda, Osaka 563–8577, Japan
Masahiro Shikano
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1–8-31 Midorigaoka, Ikeda, Osaka 563–8577, Japan
Yuqin Zhou
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1–8-31 Midorigaoka, Ikeda, Osaka 563–8577, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Extract

Polycrystalline samples of Ca1-xBixMnO3 (0.02 ≤ x ≤ 0.20) were studied by means of x-ray diffraction, electrical resistivity (ρ), thermoelectric power (S), and thermal conductivity (κ) at high temperature. Bi doping leads to the lattice parameters a, b, and c increasing. And the ρ and the absolute value of S decrease rapidly with Bi doping. The largest power factor, S2/ρ, is obtained in the x = 0.04 sample, which is 3.6×10−4 Wm−1 K−2 at 400 K. The figures of merit (Z = S2/ρκ) for this sample and 1.0×10−4 and 0.86 × 10−4 K−1 at 600 and 1000 K, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nakahara, J.F., Takeshita, T., Tschetter, M.J., Beaudry, B.J., and Gshneidner, K.A. Jr., J. Appl. Phys. 63, 2331 (1988).CrossRefGoogle Scholar
2.Boyer, A. and Cisse, E., Mater. Sci. Eng. B 113, 103 (1992).CrossRefGoogle Scholar
3.Ware, R.M. and Mc, D.J.Neill, Proc. IEEE 111, 178 (1964).Google Scholar
4.Kojima, T., Phys. Status Solidi A 111, 233 (1989).CrossRefGoogle Scholar
5.Nishida, I., Phys. Rev. B 7, 2710 (1970).CrossRefGoogle Scholar
6.Slack, G.A. and Hussain, M.A., J. Appl. Phys. 70, 2694 (1991).CrossRefGoogle Scholar
7.Vining, C.B., J. Appl. Phys. 69, 331 (1991).CrossRefGoogle Scholar
8.Rosi, F.D., Solid State Electron. 11, 833 (1968).CrossRefGoogle Scholar
9.Terasaki, I., Sasago, Y., and Uchinokura, K., Phys. Rev. B 56, R12685 (1997).CrossRefGoogle Scholar
10.Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U., and Sodeoka, S., Jpn. J. Appl. Phys. 39, L1127 (2000).CrossRefGoogle Scholar
11.Li, S., Funahashi, R., Matsubara, I., Ueno, K., Sodeoka, S., and Yamada, H., Chem. Mater. 12, 2424 (2000).CrossRefGoogle Scholar
12.Funahashi, R., Matsubara, I., and Sodeoka, S., Appl. Phys. Lett. 76, 2385 (2000).CrossRefGoogle Scholar
13.Funahashi, R. and Matsubara, I., Appl. Phys. Lett. 79, 362 (2001).CrossRefGoogle Scholar
14.Kazeoka, M., Hiramatsu, H., Seo, W.S., and Koumoto, K., J. Mater. Res. 13, 523 (1998).CrossRefGoogle Scholar
15.Ohtaki, M., Ogura, D., Eguchi, K., and Arai, H., J. Mater. Chem. 4, 653 (1994).CrossRefGoogle Scholar
16.Ohtaki, M., Tsubota, T., Eguchi, K., and Arai, H., J. Appl. Phys. 79, 1816 (1996).CrossRefGoogle Scholar
17.Yasukawa, M. and Murayama, N., J. Mater. Sci. Lett. 16, 1731 (1997).CrossRefGoogle Scholar
18.Ohtaki, M., Koga, H., Tokunaga, T., Eguchi, K., and Arai, H., J. Solid State Chem. 120, 105 (1995).CrossRefGoogle Scholar
19.Kobayashi, T., Takizawa, H., Endo, T., Sato, T., Taguchi, H., and Nagao, M., J. Solid State Chem. 92, 116 (1991).CrossRefGoogle Scholar
20.Matsubara, I., Funahashi, R., Takeuchi, T., and Sodeoka, S., Appl. Phys. Lett. 78, 3627 (2001).CrossRefGoogle Scholar
21.Hashimoto, S. and Iwahara, H., Mater. Res. Bull. 35, 2253 (2000).CrossRefGoogle Scholar
22.Xu, Gaojie (unpublished).Google Scholar
23.Santhosh, P.N., Goldberger, J., Woodward, P.M., Vogt, T., Lee, W.P., and Epstein, A.J., Phys. Rev. B 62, 14928 (2000).CrossRefGoogle Scholar
24.Tsubota, T., Ohtaki, M., Eguchi, K., and Arai, H., J. Mater. Chem. 7, 85 (1997).CrossRefGoogle Scholar
25.Yasukawa, M. and Murayama, N., J. Mater. Sci. 32, 6489 (1997).CrossRefGoogle Scholar
26.Funahashi, R. (unpublished).Google Scholar