Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T08:37:36.768Z Has data issue: false hasContentIssue false

High-temperature phase relationships for YxNd1–xBa2Cu3Oy(0.7 ≤ x ≤ 1.0) superconductors via containerless processing

Published online by Cambridge University Press:  31 January 2011

J. R. Olive
Affiliation:
Department of Chemical Engineering, Vanderbilt University, Nashville, Tennessee 37235
W. H. Hofmeister
Affiliation:
Department of Chemical Engineering, Vanderbilt University, Nashville, Tennessee 37235
R. J. Bayuzick
Affiliation:
Department of Chemical Engineering, Vanderbilt University, Nashville, Tennessee 37235
M. Vlasse
Affiliation:
Space Sciences Laboratory, George C. Marshall Space Flight Center, Huntsville, Alabama 35812
Get access

Abstract

Drop-tube experiments have been performed on YxNd1–xBa2Cu3Oy (0.7 ≤ x ≤ 1.0) to understand the effects of partial substitutions of Nd for Y on the phase relationships in these systems at elevated temperatures. Powders 50–100 μm in diameter were processed in pure O2 at furnace temperatures of 1575–1800 °C, every 25 °C. The resulting samples were examined microstructurally by scanning electron microscopy, energy dispersive spectroscopy, and optical microscopy. Powder x-ray diffraction was performed for phase identification. It was found that Nd substitution alters phase selection by introducing at least one new phase and allowing for solidification of the superconducting composition directly from the melt via undercooling to below the peritectic transformation temperature. A decreasing trend in the overall melting temperature with increasing Nd was also identified.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sheahen, T.P., Introduction to High Temperature Superconductivity (Plenum, New York, 1994).Google Scholar
2.Jin, S. and Graebner, J.E., Mater. Sci. Eng. B7, 243 (1991).CrossRefGoogle Scholar
3.Kambara, M., Nakamura, M., Shiohara, Y., and Umeda, T., Phys. C 275, 127 (1997).CrossRefGoogle Scholar
4.Folkerts, T.J., Dennis, K.W., Yoo, S.I., Xu, Y., Kramer, M.J., and McCallum, R.W., IEEE Trans. Appl. Suppl. 3(1), 1150 (1993).CrossRefGoogle Scholar
5.McCallum, R.W., Kramer, M.J., Folkerts, T.J., Arrasmith, S.R., Merkle, B.D., Yoo, S.I., Xu, Y., and Dennis, K.W., in Physical and Materials Properties of High Temperature Superconductors, edited by Malik, S.K. and Shah, S.S. (Nova Science Publishers, Inc., Commack, NY, 1992), p. 667.Google Scholar
6.Wong-Ng, W., Cook, L.P., Paretzkin, B., Hill, M.D., and Fuller, E.R., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen, D., Narayan, J., and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), p. 81.Google Scholar
7.Wong-Ng, W., Cook, L.P., Paretzkin, B., Hill, M.D., and Stalick, J.K., J. Am. Ceram. Soc. 77, 2354 (1992).CrossRefGoogle Scholar
8.Yoo, S.I., Kramer, M.J., and McCallum, R.W., IEEE Trans. Appl. Suppl. 3(1), 1232 (1993).CrossRefGoogle Scholar
9.Guskov, V.N., Tarasov, I.V., Lazarev, V.B., and Greenberg, J.H., J. Solid State Chem. 119, 62 (1995).CrossRefGoogle Scholar
10.Morris, D.E., Nickel, J.H., Markelz, A.G., Gronsky, R., Fendorf, M., and Burmester, C.P., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen, D., Narayan, J., and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), p. 245.Google Scholar
11.Brosha, E.L., Garzon, F.H., Raistrick, I.D., and Davies, P.K., J. Am. Ceram. Soc. 78, 1745 (1995).CrossRefGoogle Scholar
12.Golikov, Y.V., Yankin, A.M., Dubrovina, I.N., Deryabina, G.D., Zubkov, S.V., and Balakirev, V.F., Supercond. Phys. Chem. Eng. 5, 1656 (1992).Google Scholar
13.Roth, R.S., Rawn, C.J., Beech, F., Whitler, J.D., and Anderson, J.O. in Ceramic Superconductors II, edited by Yan, M.F. (American Ceramic Society, Westerville, OH, 1988) p. 13.Google Scholar
14.Osamura, K. and Zhang, W., Z. Metallkunde 82, 408 (1991).Google Scholar
15.Wong-Ng, W. and Cook, L.P., J. Res. Natl. Inst. Stand. 103, 379 (1998).CrossRefGoogle Scholar
16.Olive, J.R., Hofmeister, W.H., Bayuzick, R.J., Carro, G., McHugh, J.P., Hopkins, R.H., and Vlasse, M. in Containerless Processing: Techniques and Applications, edited by Hofmeister, W.H. and Schiffman, R.S. (Minerals, Metals, and Materials Society, Warrendale, PA, 1993), p. 111.Google Scholar
17.Olive, J.R., Ph.D. Dissertation, Vanderbilt University, Nashville, TN (1998).Google Scholar
18.Olive, J.R., Hofmeister, W.H., Bayuzick, R.J., Carro, G., McHugh, J.P., Hopkins, R.H., Vlasse, M., Weber, J.K.R, Nordine, P.C., and McElfresh, M., J. Mater. Res. 9, 1 (1994).CrossRefGoogle Scholar
19.Boettinger, W.J. and Perepezko, J.H., in Rapid Solidified Alloys: Processes, Structures, Properties, Applications, edited by Liebermann, H.H. (Marcel Dekker, New York, 1993), p. 17.Google Scholar
20.Cohen, M., Kear, B.H., and Mehrabian, R., in Rapid Solidification Processing: Principles and Technologies II, edited by Mehrabian, R., Kear, B.H., and Cohen, M. (Claitor's Publishing Division, Baton Rouge, LA, 1980), p. 1.Google Scholar