Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T05:25:55.719Z Has data issue: false hasContentIssue false

High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

Published online by Cambridge University Press:  03 March 2011

Linus U.J.T. Ogbuji
Affiliation:
NYMA, Inc., Lewis Research Center Group, Cleveland, Ohio 44135
M. Singh
Affiliation:
NYMA, Inc., Lewis Research Center Group, Cleveland, Ohio 44135
Get access

Abstract

The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 °C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, kp), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced kp values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi2 in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Larsen, D. C., Adams, J., Johnson, L., Teotia, A., and Hill, L., Ceramic Materials for Heat Engines (Noyes Publications, Park Ridge, NJ, 1985).Google Scholar
2Singh, M. and Levine, S. R., “Low cost fabrication of silicon carbide based ceramics and fiber reinforced composites,” Technology 2004, Washington, DC (1994).Google Scholar
3Forrest, C. W., Kennedy, P., and Shennan, J. V., Proc. 5th Symp. on Special Ceramics (The British Ceramic Research Association, Stoke-on-Trent, U. K., 1972, pp. 99123.Google Scholar
4Singh, M. and Behrendt, D. R., NASA-TM-105860 (1992).Google Scholar
5Singh, M. and Behrendt, D. R., J. Mater. Res. 9, 17011708 (1994).CrossRefGoogle Scholar
6Singh, M. and Behrendt, D. R., Mater. Sci. Engg. A187, 103107 (1994).Google Scholar
7Singh, M. and Behrendt, D. R., Mater. Sci. Engg. A194, 193200 (1995).CrossRefGoogle Scholar
8Singh, M., Pawlik, R., Salem, J. A., and Behrendt, D. R., Ceramic Trans., Vol. 38, Advances in Ceramic Matrix Composites, edited by Bansal, N. P. (The American Ceramic Society, Westerville, OH, 1993), pp. 349360.Google Scholar
9Costello, J. A. and Tressler, R. E., J. Am. Ceram. Soc. 69 (9), 674681 (1986).CrossRefGoogle Scholar
10Singhal, S. C., J. Mater. Sci. 11, 12461253 (1976).CrossRefGoogle Scholar
11Andrews, P. and Riley, F., J. Eur. Ceram. Soc. 7, 125132 (1991).CrossRefGoogle Scholar
12Clarke, D. R. and Lange, F. F., J. Am. Ceram. Soc. 63 (9–10), 586593 (1980).CrossRefGoogle Scholar
13Mieskowski, D. M., Mitchell, T. E., and Heuer, A. H., J. Am. Ceram. Soc. 67 (1), C1718 (1984).CrossRefGoogle Scholar
14Luthra, K. L., J. Am. Ceram. Soc. 74 (5), 10951103 (1991).CrossRefGoogle Scholar
15Ogbuji, L. U. and Opila, E. J., J. Electrochem. Soc. 142 (3), 925930 (1995).CrossRefGoogle Scholar
16Deal, B. E. and Grove, A. S., J. Appl. Phys. 36 (12), 37703778 (1965).CrossRefGoogle Scholar
17Schiroky, G. H., Price, R. J., and Sheehan, J. E., “Oxidation Characteristics of CVD SiC and Si3N4,” GA Project 3799, December 1986.Google Scholar
18Molzfelt, K., Ada Chem. Scand. 18 (7), 15961606 (1964).Google Scholar
19Filipuzzi, L., Naslain, R., and Jaussaud, C, J. Mater. Sci. 27, 33303334 (1992).CrossRefGoogle Scholar
20Zheng, Z., Tressler, R. E., and Spear, K. E., J. Electrochem. Soc. 137 (3), 854858 (1990).CrossRefGoogle Scholar
21Stiglich, J. J., Bhat, D. G., and Holzl, R. A., Ceram. Int. 6 (1), 310 (1980).CrossRefGoogle Scholar
22Opila, E. J., J. Am. Ceram. Soc. 78 (4), 11071110 (1995).CrossRefGoogle Scholar
23Lamkin, M. A., Riley, F. L., and Fordham, J., J. Eur. Ceram. Soc. 10, 347367 (1992).CrossRefGoogle Scholar
24Davies, D. E., Evans, U. R., and Agar, J. N., Proc. Soc. 225A, 443462 (1954).Google Scholar
25Persson, J., Kail, P., and Nygren, M., J. Am. Ceram. Soc. 75 (12), 33773384 (1992).CrossRefGoogle Scholar
26Persson, J., Kail, P., and Nygren, M., J. Eur. Ceram. Soc. 12, 177184 (1993).CrossRefGoogle Scholar
27Nickel, K. G., in Corrosion of Advanced Ceramics: Measurement and Modelling, edited by Nickel, K. G. (Kluwer Academic Publishers, Boston, 1994), pp. 5971.CrossRefGoogle Scholar
28Ogbuji, L. U., J. Mater. Sci. 16, 27532759 (1981).CrossRefGoogle Scholar
29Davidge, R. W., Evans, A. G., Gilling, D., and Wilyman, P. R., in Special Ceramics 5, edited by Popper, P. (George Falkner Press, The British Ceramic Research Association, Stoke-on-Trent, U. K., 1972), pp. 329343.Google Scholar
30Narushima, T., Goto, T., and Hirai, T., J. Am. Ceram. Soc. 72 (8), 13861390 (1989).CrossRefGoogle Scholar
31Heuer, A. H., Ogbuji, L. U., and Mitchell, T. E., J. Am. Ceram. Soc. 63 (5–6), 354355 (1980).CrossRefGoogle Scholar