Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T21:02:12.812Z Has data issue: false hasContentIssue false

High-strain-rate Superplastic Flow in 6061 Al Composite Enhanced by Liquid Phase

Published online by Cambridge University Press:  31 January 2011

W.J. Kim
Affiliation:
Dept. of Metallurgy and Materials Science, Hong-Ik University, 72–1, Sangsu-dong, Mapo-ku, Seoul, 121–791, Korea
S.H. Hong
Affiliation:
Dept. of Material Science and Engineering, Korea Advanced Institute of Science and Technology,Kusung-dong, Yusung-ku, Taejon, 305–701, Korea
H.G. Jeong
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
S.H. Min
Affiliation:
Dept. of Metallurgy, Kangnung National University, Kangwon-do, Kangnung, 210–702, Korea
Get access

Abstract

High-strain-rate superplastic behavior of powder-metallurgy processed 0%, 10%, 20%,and 30% SiC particulate reinforced 6061 Al composites was studied over a range of temperatures from 430 to 610 °C. The strength of the 6061 Al composites was lowerthan that of the 6061 Al matrix alloy in the temperature range where grain boundarysliding is believed to control the plastic flow. The difference in their strength was alsoobserved to be temperature dependent, increasing with increase in temperature.Abnormally high activation energy for superplastic flow was another important featureof the 6061 Al composites. These behaviors in particle weakening and activationenergy have strong resemblance to those noted in the high-strain-rate superplastic 2124Al composites studied previously. The observed particle weakening was attributed toliquid-enhanced superplastic flow and discussed by adopting the concept of effectivediffusivity considering mass flow through liquid phase formed at the solute-segregatedregion near SiC/Al interfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kim, W.J. and Sherby, O.D., Acta Mater. 48, 1763 (2000).Google Scholar
Pandey, A.B., Mishra, R.S., and Mahajan, Y.R., Acta Metall. Mater. 40, 2045 (1992).Google Scholar
Gonzalez-Doncel, G. and Sherby, O.D., Acta Metall. Mater. 41, 2797 (1993).Google Scholar
Kim, W.J., Mater. Sci. Eng. A 277, 134 (2000).CrossRefGoogle Scholar
Koike, J., Mabuchi, M., and Higashi, K., Atca Metall Mater. 43, 199 (1995).CrossRefGoogle Scholar
Jeong, H.G., Hiraga, K., Mabuchi, M., and Higashi, K., Acta Metall. Mater. 46, 6009 (1998).Google Scholar
Mabuchi, M., Jeong, H.G., Hiraga, K., and Higashi, K., Interface Sci. 4, 357 (1997).Google Scholar
Kim, W.J., Wolfenstine, J., and Sherby, O.D., Acta Metall. Mater. 39, 199 (1991).CrossRefGoogle Scholar
Iwasaki, H., Mabuchi, M., and Higashi, K., Acta Mater. 45, 2759 (1997).Google Scholar
Kim, W.J., Hong, S.H., and Lee, J.H., Mater. Sci. Eng. A 298, 166 (2001).Google Scholar
Weertman, J., J. Appl. Phys. 28, 362 (1957).CrossRefGoogle Scholar
Ball, A. and Hutchinson, M.M., Met. Sci. 3, 1 (1969).Google Scholar
Sherby, O.D. and Burke, P.M., Prog. Mater. Sci. 13, 325 (1968).CrossRefGoogle Scholar
Mabuchi, M. and Higashi, K., J. Mater. Res. 13, 132 (1998).Google Scholar
Mahoney, M.W. and Ghosh, A.K., Metall. Trans. A 18, 653 (1983).CrossRefGoogle Scholar
Kim, W.J. and Kum, D.W., Mater. Trans., JIM 40, 760 (1999).CrossRefGoogle Scholar
Frost, H.J. and Ashby, M.F., Deformation Mechanism Maps (Pergamon Press, Oxford, United Kingdom, 1982), p. 21.Google Scholar
Mabuchi, M., Iwasaki, H., and Higashi, K., Acta Mater. 46, 5335 (1998).Google Scholar
Cadek, J., Pahuatova, M., and Sustek, V., Mater Sci. Eng. A 246, 252 (1998).Google Scholar
Jeong, H.G., Hiraga, K., Mabuchi, M., and Higashi, K., Philos. Mag. Lett. 74, 73 (1996).Google Scholar
Ruano, O.A. and Sherby, O.D.Mater. Sci. Eng. A 39, 211 (1979).Google Scholar
Han, B.Q. and Chan, K.C., Scr. Mater. 36, 593 (1997).CrossRefGoogle Scholar
Massalski, T.B., Okamato, H., Subramanian, H., and Kacprzak, L., Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, OH, 1990), Vol. 1, p. 170.Google Scholar
Massalski, T.B., Okamato, H., Subramanian, H., and Kacprzak, L., Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, OH, 1990), Vol. 1, p. 221.Google Scholar
Villars, P., Prince, A., and Okamoto, H., Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990), Vol. 4, p. 3912.Google Scholar
Park, K.T. and Mohamed, F.A., Metall. Trans. A 26, 3119 (1995).Google Scholar
Rösler, J., Bao, G., and Evans, A.G., Acta Metall. Mater. 39, 2733 (1991).CrossRefGoogle Scholar
Mohamed, F.A., Metall. Trans. A 28, 2780 (1997).Google Scholar
Mabuchi, M., Iwasaki, H., Jeong, H.G., Hiraga, K., and Higashi, K., J. Mater. Res. 12, 2332 (1997).Google Scholar
Metals Data Book, 2nd ed. (Maruzen, Tokyo, Japan, 1984), p. 15.Google Scholar
Pharr, G.M. and Ashby, M.F., Acta Metall. 31, 129 (1983).CrossRefGoogle Scholar
Kim, W.J.., Scr. Mater. 41, 1131 (1999).CrossRefGoogle Scholar
Mabuchi, M., Higashi, K., and Langdon, T.G., Acta Metall. Mater. 42, 1739 (1994).CrossRefGoogle Scholar