Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T23:58:04.179Z Has data issue: false hasContentIssue false

High-resolution solid state NMR experiments for the characterization of calcium phosphate biomaterials and biominerals

Published online by Cambridge University Press:  07 September 2011

Frédérique Pourpoint
Affiliation:
Laboratoire Chimie de la Matière Condensée de Paris, UMR CNRS 7574, UPMC Université Paris 06, Collège de France, 75231 Paris cedex 05, France
Cristina Coelho Diogo
Affiliation:
Laboratoire Chimie de la Matière Condensée de Paris, UMR CNRS 7574, UPMC Université Paris 06, Collège de France, 75231 Paris cedex 05, France
Christel Gervais
Affiliation:
Laboratoire Chimie de la Matière Condensée de Paris, UMR CNRS 7574, UPMC Université Paris 06, Collège de France, 75231 Paris cedex 05, France
Christian Bonhomme
Affiliation:
Laboratoire Chimie de la Matière Condensée de Paris, UMR CNRS 7574, UPMC Université Paris 06, Collège de France, 75231 Paris cedex 05, France
Franck Fayon
Affiliation:
CEMHTI, CNRS UPR 3079, 45071 Orléans cedex 2, France
Sara Laurencin Dalicieux
Affiliation:
INSERM Unité 563 (Centre de Physiopathologie de Toulouse Purpan), Université Paul-Sabatier, Hôpital Purpan, CHU de Toulouse, 31059 Toulouse cedex 9, France
Isabelle Gennero
Affiliation:
INSERM Unité 563 (Centre de Physiopathologie de Toulouse Purpan), Université Paul-Sabatier, Hôpital Purpan, CHU de Toulouse, 31059 Toulouse cedex 9, France
Jean-Pierre Salles
Affiliation:
INSERM Unité 563 (Centre de Physiopathologie de Toulouse Purpan), Université Paul-Sabatier, Hôpital Purpan, CHU de Toulouse, 31059 Toulouse cedex 9, France
Andrew P. Howes
Affiliation:
Department of Physics, University of Warwick, CV4 7AL Coventry, UK
Ray Dupree
Affiliation:
Department of Physics, University of Warwick, CV4 7AL Coventry, UK
John V. Hanna
Affiliation:
Department of Physics, University of Warwick, CV4 7AL Coventry, UK
Mark E. Smith
Affiliation:
Department of Physics, University of Warwick, CV4 7AL Coventry, UK
Francesco Mauri
Affiliation:
Laboratoire de Minéralogie Cristallographie UMR CNRS 7590, UPMC Université Paris 06, France
Gilles Guerrero
Affiliation:
Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS UM2 UM1 ENSCM, CC 1701 Université de Montpellier 2, 34095 Montpellier cedex 5, France
P. Hubert Mutin
Affiliation:
Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS UM2 UM1 ENSCM, CC 1701 Université de Montpellier 2, 34095 Montpellier cedex 5, France
Danielle Laurencin*
Affiliation:
Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS UM2 UM1 ENSCM, CC 1701 Université de Montpellier 2, 34095 Montpellier cedex 5, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Calcium phosphates form a vast family of biominerals, which have attracted much attention in fields like biology, medicine, and materials science, to name a few. Solid state Nuclear Magnetic Resonance (NMR) is one of the few techniques capable of providing information about their structure at the atomic level. Here, examples of recent advances of solid state NMR techniques are given to demonstrate their suitability to characterize in detail synthetic and biological calcium phosphates. Examples of high-resolution 31P, 1H (and 17O), solid state NMR experiments of a 17O-enriched monocalcium phosphate monohydrate-monetite mixture and of a mouse tooth are presented. In both cases, the advantage of performing fast Magic Angle Spinning NMR experiments at high magnetic fields is emphasized, notably because it allows very small volumes of sample to be analyzed.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Elliott, J.C.: Structure and chemistry of the apatites and other calcium orthophosphates, in Studies in Inorganic Chemistry, Vol. 18 (Elsevier, Amsterdam 1994).Google Scholar
2.Dorozhkin, S.V.: Calcium orthophosphates. J. Mater. Sci. 42, 1061 (2007).CrossRefGoogle Scholar
3.Dorozhkin, S.V. and Epple, M.: Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 41, 3130 (2002).3.0.CO;2-1>CrossRefGoogle ScholarPubMed
4.Dorozkhin, S.V.: Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 6, 715 (2010).CrossRefGoogle Scholar
5.Wang, L. and Nancollas, G.H.: Calcium orthophosphates: Crystallization and dissolution. Chem. Rev. 108, 4628 (2008).CrossRefGoogle ScholarPubMed
6.Bazin, D., Chappard, C., Combes, C., Carpentier, X., Rouzière, S., André, G., Matzen, G., Allix, M., Thiaudière, D., Reguer, S., Jungers, P., and Daudon, M.: Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporos. Int. 20, 1065 (2009).CrossRefGoogle ScholarPubMed
7.Handschin, R.G. and Stern, W.B.: X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone 16, S355 (1995).CrossRefGoogle Scholar
8.Rey, C., Combes, C., Drouet, C., and Glimcher, M.J.: Bone mineral: Update on chemical composition and structure. Osteoporos. Int. 20, 1013 (2009).CrossRefGoogle ScholarPubMed
9.Rubin, M.A., Jasiuk, I., Taylor, J., Rubin, J., Ganey, T., and Apkarian, R.P.: TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33, 270 (2003).CrossRefGoogle ScholarPubMed
10.Rubin, M.A. and Jasiuk, I.: The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron 36, 653 (2005).CrossRefGoogle ScholarPubMed
11.Miller, L.M., Vairavamurthy, V., Chance, M.R., Mendelsohn, R., Paschalis, E.P., Betts, F., and Boskey, A.L.: In situ analysis of mineral content and crystallinity in bone using infrared microspectroscopy, of the ν4 (PO4)3−vibration. Biochim. Biophys. Acta 1527, 11 (2001).CrossRefGoogle Scholar
12.Rey, C., Collins, B., Shimizu, M., and Glimcher, M.J.: Resolution enhanced Fourier transform infrared spectroscopic study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: I. Investigation in the ν4 PO4 domain. Calcif. Tissue Int. 46, 384 (1990).CrossRefGoogle Scholar
13.Paschalis, E.P., Betts, F., Di Carlo, E., Mendelsohn, R., and Boskey, A.L.: FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif. Tissue Int. 61, 480 (1997).CrossRefGoogle ScholarPubMed
14.Takata, S., Shibata, A., Yonezu, H., Yamada, T., Takahashi, M., Abbaspour, A., and Yasui, N.: Biophysic evaluation of bone quality-application of Fourier transform infrared spectroscopy and phosphorus-31 solid-state nuclear-magnetic-resonance spectroscopy. J. Med. Invest. 51, 133 (2004).CrossRefGoogle ScholarPubMed
15.Sauer, G., Zunic, W.B., Durig, J.R., and Wuthier, R.E.: Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates. Calcif. Tissue Int. 54, 414 (1994).CrossRefGoogle ScholarPubMed
16.Rey, C., Combes, C., Drouet, C., Sfihi, H., and Barroug, A.: Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials. Mater. Sci. Eng. C27, 198 (2007).CrossRefGoogle Scholar
17.Laurencin, D., Wong, A., Chrzanowski, W., Knowles, J.C., Qiu, D., Pickup, D.M., Newport, R.J., Gan, Z., Duer, M.J., and Smith, M.E.: Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 12, 1081 (2010).CrossRefGoogle ScholarPubMed
18.Binsted, N., Hasnain, S.S., and Hukins, D.W.L.: Developmental changes in bone mineral structure demonstrated by extended X-ray absorption fine structure (EXAFS) spectroscopy. Biochem. Biophys. Res. Commun. 107, 89 (1982).CrossRefGoogle ScholarPubMed
19.Harries, J.E., Hukins, D.W.L., and Hasnain, S.S.: Calcium environment in bone mineral determined by EXAFS spectroscopy. Calcif. Tissue Int. 43, 250 (1988).CrossRefGoogle ScholarPubMed
20.Kolodziejski, W.: Solid-state NMR studies of bone. Top. Curr. Chem. 246, 235 (2005).CrossRefGoogle ScholarPubMed
21.Pourpoint, F., Gervais, C., Bonhomme-Coury, L., Azaïs, T., Coelho, C., Mauri, F., Alonso, B., Babonneau, F., and Bonhomme, C.: Calcium phosphates and hydroxyapatites: Solid state NMR experiments and first-principles calculations. Appl. Magn. Reson. 32, 435 (2007).CrossRefGoogle Scholar
22.Maltsev, S., Duer, M.J., Murray, R.C., and Jaeger, C.: A solid-state NMR comparison of the mineral structure in bone from diseased joints in the horse. J. Mater. Sci. 42, 8804 (2007).CrossRefGoogle Scholar
23.Kaflak-Hachulska, A., Samoson, A., and Kolodziejski, W.: 1H MAS and 1H —> 31P CP/MAS NMR Study of Human Bone Mineral. Calcif. Tissue Int. 73, 476 (2003).CrossRefGoogle ScholarPubMed
24.Kaflak, A. and Kolodziejski, W.: Complementary information on water and hydroxyl groups in nanocrystalline carbonated hydroxyapatites from TGA, NMR and IR measurements. J. Mol. Struct. 990, 263 (2011).CrossRefGoogle Scholar
25.Wilson, E.E., Awonusi, A., Morris, M.D., Kohn, D.H., Tecklenburg, M.M.J., and Beck, L.W.: Three structural roles for water in bone observed by solid-state NMR. Biophys. J. 90, 3722 (2006).CrossRefGoogle ScholarPubMed
26.Reid, D.G., Jackson, G.J., Duer, M.J., and Rodgers, A.L.: Apatite in kidney stones is a molecular composite with glycosaminoglycans and proteins: Evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall’s plaque, pathogenesis and prophylaxis. J. Urol. 185, 725 (2011).CrossRefGoogle Scholar
27.Reid, D.G., Duer, M.J., Murray, R.C., and Wise, E.R.: The organic mineral interface in teeth is like that in bone and dominated by polysaccharides: Universal mediators of normal calcium phosphate biomineralization in vertebrates? Chem. Mater. 20, 3549 (2008).CrossRefGoogle Scholar
28.Huang, S-J., Tsai, Y-L., Lee, Y-L., Lin, C-P., and Chan, J.C.C.: Structural model of rat dentin revisited. Chem. Mater. 21, 2583 (2009).CrossRefGoogle Scholar
29.Kolmas, J. and Kołodziejski, W.: Concentration of hydroxyl groups in dental apatites: A solid-state 1H MAS NMR study using inverse 31P —> 1H cross-polarization. Chem. Commun. 4390 (2007).CrossRefGoogle ScholarPubMed
30.Yesinowski, J.P. and Eckert, H.: Hydrogen environments in calcium phosphates: 1H MAS NMR at high spinning speeds. J. Am. Chem. Soc. 109, 6274 (1987).CrossRefGoogle Scholar
31.Laurencin, D., Wong, A., Dupree, R., and Smith, M.E.: Natural abundance 43Ca solid-state NMR characterization of hydroxyapatite: Identification of the two calcium sites. Magn. Reson. Chem. 46, 347 (2008).CrossRefGoogle ScholarPubMed
32.Gervais, C., Laurencin, D., Wong, A., Pourpoint, F., Labram, J., Woodward, B., Howes, A.P., Pike, K.J., Dupree, R., Mauri, F., Bonhomme, C., and Smith, M.E.: New perspectives on calcium environments in inorganic materials containing calcium-oxygen bonds: A combined computational-experimental 43Ca NMR approach. Chem. Phys. Lett. 464, 42 (2008).CrossRefGoogle Scholar
33.Rothwell, W.P., Waugh, J.S., and Yesinowski, J.P.: High resolution variable-temperature phosphorus-31 NMR of solid calcium phosphates. J. Am. Chem. Soc. 102, 2637 (1980).CrossRefGoogle Scholar
34.Kolmas, J., Ślósarczyk, A., Wojtowicz, A., and Kolodziejski, W.: Estimation of the specific surface area of apatites in human mineralized tissues using 31P MAS NMR. Solid State Nucl. Magn. Reson. 32, 53 (2007).CrossRefGoogle ScholarPubMed
35.Cho, G., Wu, Y., and Ackerman, J.L.: Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300, 1123 (2003).CrossRefGoogle ScholarPubMed
36.Pourpoint, F., Kolassiba, A., Gervais, C., Azaïs, T., Bonhomme-Coury, L., Bonhomme, C., and Mauri, F.: First-principles calculations of NMR parameters in biocompatible materials science: The case study of calcium phosphates, β- and γ-Ca(PO3)2. Combination with MAS-J experiments. Chem. Mater. 19, 6367 (2007).CrossRefGoogle Scholar
37.Tseng, Y-H., Mou, C-Y., and Chan, J.C.C.: Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: A mechanistic model for central dark line formation. J. Am. Chem. Soc. 128, 6909 (2006).CrossRefGoogle ScholarPubMed
38.Jäger, C., Welzel, T., Meyer-Zaika, W., and Epple, M.: A solid-sate NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn. Reson. Chem. 44, 573 (2006).CrossRefGoogle Scholar
39.Isobe, T., Nakamura, S., Nemoto, R., Senna, M., and Sfihi, H.: Solid-state nuclear magnetic resonance study of the local structure of calcium phosphate nanoparticles synthesized by a wet-mechanochemical reaction. J. Phys. Chem. B. 106, 5169 (2002).CrossRefGoogle Scholar
40.Laurencin, D., Almora-Barrios, N., de Leeuw, N.H., Gervais, C., Bonhomme, C., Mauri, F., Chrzanowski, W., Knowles, J.C., Newport, R.J., Wong, A., Gan, Z., and Smith, M.E.: Magnesium incorporation into hydroxyapatite. Biomaterials 32, 1826 (2011).CrossRefGoogle ScholarPubMed
41.Ashbrook, S.E. and Smith, M.E.: Solid state 17O NMR—an introduction to the background principles and applications to inorganic materials. Chem. Soc. Rev. 35, 718 (2006).CrossRefGoogle Scholar
42.MacKenzie, K.J.D. and Smith, M.E.: Multinuclear Solid State NMR of Inorganic Materials (Pergamon Materials Series, Pergamon Press, Oxford, UK, 2002).Google Scholar
43.Wu, G., Rovnyank, D., Sun, B., and Griffin, R.G.: High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei. Chem. Phys. Lett. 249, 210 (1995).CrossRefGoogle Scholar
44.Pickard, C.J. and Mauri, F.: All-electron magnetic response pseudopotentials NMR chemical shifts. Phys. Rev. B: Condens.Mater 63, 245101 (2001).CrossRefGoogle Scholar
45.Chappell, H., Duer, M., Groom, N., Pickard, C., and Bristowe, P.: Probing the surface structure of hydroxyapatite using NMR spectroscopy and first-principles calculations. Phys. Chem. Chem. Phys. 10, 600 (2008).CrossRefGoogle ScholarPubMed
46.Amoureux, J.P., Fernandez, C., and Steuernagel, S.: Z filtering in. MQMAS NMR. J. Magn. Reson. A 123, 116 (1996).CrossRefGoogle ScholarPubMed
47.Fung, B.M., Khitrin, A.K., and Ermolaev, K.: An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97 (2000).CrossRefGoogle ScholarPubMed
48.Coelho, C., Rocha, J., Madhu, P.K., and Mafra, L.: Practical aspects of Lee-Goldburg based CRAMPS techniques for high resolution 1H NMR spectroscopy in solids: Implementation and applications. J. Magn. Reson. 194, 264 (2008).CrossRefGoogle ScholarPubMed
49.Van Rossum, B.J., Förster, H., and de Groot, H.J.M.: High field and high-speed CP MAS 13C NMR heteronuclear dipolar correlation spectroscopy of solids with frequency-switched Lee-Goldburg homonuclear decoupling. J. Magn. Reson. 124, 516 (1997).CrossRefGoogle Scholar
50.PARATEC (PARAllel Total Energy Code) by Pfrommer, B., Raczkowski, D., Canning, A., Louie, S.G.; Lawrence Berkeley National Laboratory (with contributions from F. Mauri, M. Cote, Y. Yoon, C. Pickard and P. Heynes) based on the GIPAW approach (see Ref. 44); for more information see www.nersc.gov/projects/paratec.Google Scholar
51.Perdew, J.P., Burke, K. and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865e8 (1996).CrossRefGoogle ScholarPubMed
52.Troulier, N. and Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. 2. Operators for fast iterative diagonalization. Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
53.Kleinman, L. and Bylander, D.: Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425 (1982).CrossRefGoogle Scholar
54.Schroeder, L.W., Prince, E., and Dickens, B.: Hydrogen bonding in Ca(H2PO4)2·H2O as determined by neutron diffraction. Acta Crystallogr. B B31, 9 (1975).CrossRefGoogle Scholar
55.Catti, M., Ferraris, G., and Filhol, A.: A hydrogen-bonding in crystalline state: CaHPO4 (Monetite), P-1 or P1–Novel neutron-diffraction study. Acta Crystallogr. B 33, 1223 (1977).CrossRefGoogle Scholar
56.Profeta, M., Mauri, F., and Pickard, C.J.: Accurate first principles prediction of 17O NMR parameters in SiO2: Assignment of the zeolite ferrierite spectrum. J. Am. Chem. Soc. 125, 541 (2003).CrossRefGoogle ScholarPubMed
57.Cherry, B.R., Alam, T.M., Click, C., Brow, R.K., and Gan, Z.H.: Combined ab initio computational and solid-state 17O MAS NMR studies of crystalline P2O5. J. Phys. Chem. B. 107, 4894 (2003).CrossRefGoogle Scholar
58.Flambard, A., Montagne, L., and Delevoye, L.: A new 17O-isotopic enrichment method for the NMR characterisation of phosphate compounds. Chem. Commun. 32, 3426 (2006).CrossRefGoogle Scholar
59.Gervais, C., Babonneau, F., and Smith, M.E.: Detection, quantification, and magnetic field dependence of solid-state 17O NMR of X-O-Y (X, Y = Si, Ti) linkages: Implications for characterizing amorphous titania-silica-based materials. J. Phys. Chem. B 105, 1971 (2001).CrossRefGoogle Scholar
60.Gervais, C., Profeta, M., Lafond, V., Bonhomme, C., Azaïs, T., Mutin, H., Pickard, C.J., Mauri, F., and Babonneau, F.: Combined ab initio computational and experimental multinuclear solid-state magnetic resonance study of phenylphosphonic acid. Magn. Reson. Chem. 42, 445 (2004).CrossRefGoogle ScholarPubMed
61.Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.O., Bujoli, B., Gan, Z., and Hoatson, G.: Modelling one and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70 (2002).CrossRefGoogle Scholar
62.Gervais, C., Dupree, R., Pike, K.J., Bonhomme, C., Profetta, M., Pickard, C.J., and Mauri, F.: Combined first-principles computational and experimental multinuclear solid-state NMR investigation of amino acids. J. Phys. Chem. A 109, 6960 (2005).CrossRefGoogle ScholarPubMed
63.Gervais, C., Profeta, M., Babonneau, F., Pickard, C.J., and Mauri, F.: Ab-initio calculations of NMR parameters of highly coordinated oxygen sites in aluminosilicates. J. Phys. Chem. B 108, 13249 (2004).CrossRefGoogle Scholar
64.Gervais, C., Coelho, C., Azaïs, T., Maquet, J., Laurent, G., Pourpoint, F., Bonhomme, C., Florian, P., Alonso, B., Guerrero, G., Mutin, P.H., and Mauri, F.: First principles NMR calculations of phenylphosphinic acid C6H5HPO(OH): Assignments, orientation of tensors by local field experiments and effect of molecular motion. J. Magn. Reson. 187, 131 (2007).CrossRefGoogle ScholarPubMed
65.Frydman, L. and Harwood, J.S.: Isotropic spectra of half–integer quadrupolar spins from bidimensional MAS NMR. J. Am. Chem. Soc. 117, 5367 (1995).CrossRefGoogle Scholar
66.Samoson, A., Lippmaa, E., and Pines, A.: High resolution solid state NMR averaging of second-order effects by means of a double-rotor. Mol. Phys. 65, 1013 (1988).CrossRefGoogle Scholar
67.Hung, I., Howes, A.P., Parkinson, B.G., Anupold, T., Samoson, A., Brown, S.P., Harrison, P.F., Holland, D., and Dupree, R.: Determination of the bond-angle distribution in vitreous B2O3 by 11B double rotation (DOR) NMR spectroscopy. J. Solid State Chem. 182, 2402 (2009).CrossRefGoogle Scholar
68.Roiland, C.: Etude de l’ordre local dans des phosphates désordonnés modèles par spectroscopies RMN et RAMAN. PhD Thesis (Orléans University, France, 2007).Google Scholar
69.Bryce, D.L., Eichele, K., and Wasylishen, R.E.: An 17O NMR and quantum chemical study of monoclinic and orthorhombic polymorphs of triphenylphosphine oxide. Inorg. Chem. 42, 5085 (2003).CrossRefGoogle ScholarPubMed
70.Hung, I., Wong, A., Howes, A.P., Anupõld, T., Past, J., Samoson, A., Mo, X., Wu, G., Smith, M.E., Brown, S.P., and Dupree, R.: Determination of NMR interaction parameters from double rotation NMR. J. Magn. Reson. 188, 246 (2007).CrossRefGoogle ScholarPubMed
71.Bonhomme, C., Gervais, C., Coelho, C., Pourpoint, F., Azaïs, T., Bonhomme-Coury, L., Babonneau, F., Jacob, G., Ferrari, M., Canet, D., Yates, J.R., Pickard, C.J., Joyce, S.A., and Mauri, F.: New perspectives in the PAW/GIPAW approach: JP-O-Si coupling constants, antisymmetric parts of shift tensors and NQR predictions. Magn. Reson. Chem. 48, S86 (2010).CrossRefGoogle ScholarPubMed
72.Menger, E.M. and Veeman, W.S.: Quadrupole effects in high-resolution phosphorus-31 solid state NMR spectra of triphenylphosphine copper (I) complexes. J. Magn. Reson. 46, 257 (1982).Google Scholar
73.Massiot, D., Fayon, F., Alonso, B., Trebosc, J., and Amoureux, J.P.: Chemical bonding differences evidenced from J-coupling in solid state NMR experiments involving quadrupolar nuclei. J. Magn. Reson. 164, 160 (2003).CrossRefGoogle ScholarPubMed
74.Montouillout, V., Morais, C.M., Douy, A., Fayon, F., and Massiot, D.: Toward a better description of gallo-phosphate materials in solid-state NMR: 1D and 2D correlation studies. Magn. Reson. Chem. 44, 770 (2006).CrossRefGoogle Scholar
75.Martineau, C., Fayon, F., Legein, C., Buzare, J.Y., Silly, G., and Massiot, D.: Accurate heteronuclear J-coupling measurements in dilute spin systems using the multiple-quantum filtered J-resolved experiment. Chem. Commun. 26, 2720 (2007).CrossRefGoogle Scholar
76.Lesage, A.: Recent advances in solid-state NMR spectroscopy of spin I = 1/2 nuclei. Phys. Chem. Chem. Phys. 11, 6876 (2009) (and references therein).CrossRefGoogle ScholarPubMed
77.Bowes, J.H. and Murray, M.M.: The composition of human enamel and dentine. Biochem. J. 30, 977 (1936).CrossRefGoogle Scholar
78.Melacini, G., Feng, Y., and Goodman, M.: Acetyl-terminated and template-assembled collagen-based polypeptides composed of Gly-Pro-Hyp sequences. 3. Conformational analysis by 1H-NMR and molecular modeling studies. J. Am. Chem. Soc. 118, 10359 (1996).CrossRefGoogle Scholar
79.Sakellariou, D., Le Goff, G., and Jacquinot, J-F.: High-resolution, high-sensitivity NMR of nanolitre anisotropic samples by coil spinning. Nature 447, 694 (2007).CrossRefGoogle ScholarPubMed
80.Wong, A., Aguiar, P.M., and Sakellariou, D.: Slow magic-angle coil spinning: A high-sensitivity and high-resolution NMR strategy for microscopic biological specimens. Magn. Reson. Med. 63, 269 (2010).CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Pourpoint Supplementary Materials

Pourpoint Supplementary Materials

Download Pourpoint Supplementary Materials(PDF)
PDF 99.4 KB