Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T02:53:47.304Z Has data issue: false hasContentIssue false

Highly stable fluoride glass

Published online by Cambridge University Press:  31 January 2011

Abdessamad Elyamani*
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, New Jersey 08854
Elias Snitzer
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, New Jersey 08854
Robert Pafchek
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, New Jersey 08854
George H. Sigel Jr.
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, New Jersey 08854
*
a)Present address: Bellcore, Laboratory 21100, Network Technology Research, NVC-3Z364,331 Newman Springs Road, P.O. Box 7040, Red Bank, New Jersey 07701-7040.
Get access

Abstract

A new family of modified ZBLAN glass compositions has been synthesized which provides better stability against crystallization. A preliminary study of the Hruby factor HR shows higher values as compared to a ZBLAN glass prepared under the same conditions, utilizing similar high purity starting materials. Large rods of clear glass with a 1.5 cm diameter and up to 17 cm in length were easily obtained. Results will be presented on the physical properties and crystallization behavior of these high stability glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kanamori, T., Mater. Sci. Forum 1920, 363 (1987).Google Scholar
2.Miyashita, T. and Manabe, T., IEEE J. Quant. Elect. QE. 18, 1432 (1982).CrossRefGoogle Scholar
3.Tran, D. C., Burk, M. J., Levin, K. H., Fisher, C. F., Hart, P., Busse, L., Lu, G., and Sigel, G. H., Jr., Mater. Sci. Forum 5, 339 (1985).CrossRefGoogle Scholar
4.Shibata, T., Takahashi, H., Kimura, M., Ijichi, T., Takahashi, K., Sasaki, Y., and Yoshida, S., Mater. Sci. Forum 5, 379 (1985).CrossRefGoogle Scholar
5.Busse, L. E., Lu, G., Tran, D. C., and Sigel, G. H., Jr., Mater. Sci. Forum 5, 219 (1985).CrossRefGoogle Scholar
6.Maze, G., Carree, J., and Poulain, M., U.S. Patent No. 4661413.Google Scholar
7.Mimura, Y., Tokiwa, H., Shinbori, O., and Nakai, T., U.S. Patent No. 4674835.Google Scholar
8.Uhlmann, D. R., J. Non-Cryst. Solids 7, 337 (1972).CrossRefGoogle Scholar
9.Clausse, D. and Brotto, I., Colloid. Polym. Sci. Lett. 260, 641 (1982).CrossRefGoogle Scholar
10.Hruby, A., Czech. J. Phys. B.32, 1187 (1972).CrossRefGoogle Scholar
11.Esmault-Goresdemonge, M. A., Matecki, M., and Poulain, M., Mater. Sci. Forum 5, 241 (1985).CrossRefGoogle Scholar
12.Busse, L. E., Ginther, R. J., and Miklos, R., Mater. Sci. Forum 19–20, 523 (1987).CrossRefGoogle Scholar
13.Avrami, M., J. Chem. Phys. 7, 1103 (1939); J. Chem. Phys. 8, 212 (1940); J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
14.Ozawa, T., Bull. Chem. Soc. Jpn. 38, 1881 (1965).CrossRefGoogle Scholar
15.Chen, S. H., J. Non-Cryst. Solids 27, 257 (1978).CrossRefGoogle Scholar
16.Augis, J. A. and Benett, J. E., J. Thermal Anal. 13, 283 (1978).CrossRefGoogle Scholar
17.MacFarlane, D. R., Poulain, M., and Matecki, M., J. Non-Cryst. Solids 64, 351 (1984).CrossRefGoogle Scholar
18.Uhlmann, D. R., Klein, L., Onorato, P. I. K., and Hopper, R. W., Proc. Lunar. Sci. Conf. 6th, 693 (1975).Google Scholar
19.Grange, R. A. and Kiefer, J. M., Trans. Am. Soc. Met. 29, 85 (1941).Google Scholar
20.Onorato, P. I. K. and Uhlmann, D. R., J. Non-Cryst. Solids 22, 367 (1976).CrossRefGoogle Scholar