Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T13:04:14.810Z Has data issue: false hasContentIssue false

Highly controlled crystallite size and crystallinity of pure and iron-doped anatase-TiO2 nanocrystals by continuous flow supercritical synthesis

Published online by Cambridge University Press:  30 July 2012

Jian-Li Mi
Affiliation:
Department of Chemistry and iNANO, Centre for Materials Crystallography, Aarhus University, DK-8000Aarhus, Denmark
Simon Johnsen
Affiliation:
Department of Chemistry and iNANO, Centre for Materials Crystallography, Aarhus University, DK-8000Aarhus, Denmark
Casper Clausen
Affiliation:
Department of Chemistry and iNANO, Centre for Materials Crystallography, Aarhus University, DK-8000Aarhus, Denmark
Peter Hald
Affiliation:
Department of Chemistry and iNANO, Centre for Materials Crystallography, Aarhus University, DK-8000Aarhus, Denmark
Nina Lock
Affiliation:
Department of Chemistry and iNANO, Centre for Materials Crystallography, Aarhus University, DK-8000Aarhus, Denmark
Lasse Sø
Affiliation:
Department of Chemistry and iNANO, Centre for Materials Crystallography, Aarhus University, DK-8000Aarhus, Denmark
Bo B. Iversen*
Affiliation:
Department of Chemistry and iNANO, Centre for Materials Crystallography, Aarhus University, DK-8000Aarhus, Denmark
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High purity anatase titanium dioxide (TiO2) and iron (Fe)-doped TiO2 nanocrystals were prepared by a continuous flow synthesis method using isopropanol-water mixtures as solvent in supercritical or near-critical conditions. The method allows complete control of size (5–20 nm) and crystallinity (10–100%) of the nanoparticles and provides quick synthesis with a residence time of ∼10 s that can be scaled up to commercial production. It is found that the average crystallite size can be easily controlled by adjusting the ratio between isopropanol and water in the solvent, whereas the crystallinity is mainly controlled by the reaction temperature. As-prepared Fe-doped TiO2 nanoparticles appear to be single phase, but Fe3+ ions most likely do not occupy the Ti4+ sites in the anatase TiO2 crystal structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1 (2000).Google Scholar
Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).Google Scholar
O’Regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).Google Scholar
Crätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).Google Scholar
Grätzel, M.: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol., A 164, 3 (2004).Google Scholar
Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841 (2005).Google Scholar
Chen, D., Huang, F., Cheng, Y.B., and Caruso, R.A.: Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Adv. Mater. 21, 2206 (2009).Google Scholar
Li, G., Li, L., Boerio-Goates, J., and Woodfield, B.F.: High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc. 127, 8659 (2005).Google Scholar
Vorontsov, A.V., Altynnikov, A.A., Savinov, E.N., and Kurkin, E.N.: Correlation of TiO2 photocatalytic activity and diffuse reflectance spectra. J. Photochem. Photobiol., A 144, 193 (2001).Google Scholar
Pettibone, J.M., Cwiertny, D.M., Scherer, M., and Grassian, V.H.: Adsorption of organic acids on TiO2 nanoparticles: Effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24, 6659 (2008).Google Scholar
Jang, H.D., Kim, S.K., and Kim, S.J.: Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 3, 141 (2001).Google Scholar
Chou, T.P., Zhang, Q., Russo, B., Fryxell, G.E., and Cao, G.: Titania particle size effect on the overall performance of dye-sensitized solar cells. J. Phys. Chem. C 111, 6296 (2007).Google Scholar
Simonsen, M.E., Jensen, H., Li, Z.S., and Søgaard, E.G.: Surface properties and photocatalytic activity of nanocrystalline titania films. J. Photochem. Photobiol., A 200, 192 (2008).Google Scholar
Li, C., Luo, Y., Li, D., Mi, J.L., , L., Hald, P., Meng, Q., and Iversen, B.B.: Performance enhanced dye-sensitized solar cells based on anatase TiO2 nanoparticles synthesized using a rapid, green and scalable supercritical fluid process. Cryst. Eng. Comm. (2012, submitted).Google Scholar
Fan, Y., Chen, G., Li, D., Luo, Y., Lock, N., Jensen, A.P., Mamakhel, A., Mi, J., Iversen, S.B., Meng, Q., and Iversen, B.B.: Highly selective deethylation of Rhodamine B on TiO2 prepared in supercritical fluids. Int. J. Photoenergy 2012, 173865 (2012).Google Scholar
Jagadale, T.C., Takale, S.P., Sonawane, R.S., Joshi, H.M., Patil, S.I., Kale, B.B., and Ogale, S.B.: N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol−gel method. J. Phys. Chem. C 112, 14595 (2008).Google Scholar
Khan, M.A., Akhtar, M.S., and Yang, O.B.: Synthesis, characterization and application of sol–gel derived mesoporous TiO2 nanoparticles for dye-sensitized solar cells. Sol. Energy 84, 2195 (2010).CrossRefGoogle Scholar
Sauvage, F., Chen, D., Comte, P., Huang, F., Heiniger, L.P., Cheng, Y.B., Caruso, R.A., and Graetzel, M.: Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4, 4420 (2010).Google Scholar
Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 (2006).CrossRefGoogle Scholar
Chin, S., Park, E., Kim, M., Bae, G.N., and Jurng, J.: Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by chemical vapor condensation method with different precursor concentration and residence time. J. Colloid Interface Sci. 362, 470 (2011).CrossRefGoogle ScholarPubMed
Wahi, R.K., Liu, Y., Falkner, J.C., and Colvin, V.L.: Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area. J. Colloid Interface Sci. 302, 530 (2006).Google Scholar
Kartini, I., Menzies, D., Blake, D., da Costa, J.C.D., Meredith, P., Riches, J.D., and Lu, G.Q.: Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitized solar cells (DSSCs). J. Mater. Chem. 14, 2917 (2004).Google Scholar
Adschiri, T., Kanazawa, K., and Arai, K.: Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water. J. Am. Ceram. Soc. 75, 1019 (1992).Google Scholar
Hald, P., Becker, J., Bremholm, M., Pedersen, J.S., Chevallier, J., Iversen, S.B., and Iversen, B.B.: Supercritical propanol–water synthesis and comprehensive size characterization of highly crystalline anatase TiO2 nanoparticles. J. Solid State Chem. 179, 2674 (2006).Google Scholar
Lock, N., Hald, P., Christensen, M., Birkedal, H., and Iversen, B.B.: Continuous flow supercritical water synthesis and crystallographic characterization of anisotropic boehmite nanoparticles. J. Appl. Cryst. 43, 858 (2010).Google Scholar
Becker, J., Hald, P., Bremholm, M., Pedersen, J.S., Chevallier, J., Iversen, S.B., and Iversen, B.B.: Critical size of crystalline ZrO2 nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol. ACS Nano 2, 1058 (2008).Google Scholar
Kawasaki, S., Xiuyi, Y., Sue, K., Hakuta, Y., Suzuki, A., and Arai, K.: Continuous supercritical hydrothermal synthesis of controlled size and highly crystalline anatase TiO2 nanoparticles. J. Supercrit. Fluids 50, 276 (2009).Google Scholar
Toft, L.L., Aarup, D.F., Bremholm, M., Hald, P., and Iversen, B.B.: Comparison of T-piece and concentric mixing systems for continuous flow synthesis of anatase nanoparticles in supercritical isopropanol/water. J. Solid State Chem. 182, 491 (2009).Google Scholar
Choi, J., Park, H., and Hoffmann, M.R.: Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114, 783 (2010).Google Scholar
Wang, C.Y., Bahnemann, D.W., and Dohrmann, J.K.: A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chem. Commun. 1539 (2000).Google Scholar
Jeong, E.D., Borse, P.H., Jang, J.S., Lee, J.S., Jung, O-S., Chang, H., Jin, J.S., Won, M.S., and Kim, H.G.: Hydrothermal synthesis of Cr and Fe codoped TiO2 nanoparticle photocatalyst. J. Ceram. Process. Res. 9, 250 (2008).Google Scholar
Luu, C.L., Nguyen, Q.T., and Ho, S.T.: Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol-gel method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 015008 (2010).Google Scholar
Naeem, K. and Ouyang, F.: Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light. Physica B 405, 221 (2010).Google Scholar
Mi, J.L., Jensen, T.N., Hald, P., Overgaard, J., Christensen, M., and Iversen, B.B.: Glucose-assisted continuous flow synthesis of Bi2Te3 nanoparticles in supercritical/near-critical water. J. Supercrit. Fluids 67, 84 (2012).Google Scholar
Valencia, S., Marín, J.M., and Restrepo, G.: Study of the band gap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment. The open Materials Science Journal 4, 9 (2010).Google Scholar
López, R. and Gómez, R.: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 61, 1 (2012).Google Scholar