Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T04:46:28.442Z Has data issue: false hasContentIssue false

Higher nitrides of hafnium, zirconium, and titanium synthesized by dual ion beam deposition

Published online by Cambridge University Press:  31 January 2011

B.O. Johansson
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
H.T.G. Hentzell
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
J.M.E. Harper
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
J.J. Cuomo
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

We report the preparation and properties of higher nitrides of Hf, Zr, and Ti synthesized by dual ion beam deposition. For Hf and Zr, evidence is given for the existence of a metastable nitride phase with composition of approximately Hf3 N4 and Zr3 N4. These two materials are insulating and transparent straw colored, in contrast to the well-known mononitrides, which are shiny, gold colored, and highly conducting. For Ti-N we do not reach as high an N content and do not obtain an insulating, transparent phase. The higher nitrides of Hf and Zr are synthesized under energetic nitrogen ion bombardment (200 e V) of a growing film and do not form in the presence of molecular nitrogen gas alone. Several variations of the ion beam deposition process are used to obtain a wide range of film composition and to study the transition from the mononitride to the higher nitride phase. Transmission electron diffraction shows the structure of Hf3N4 and Zr3N4 to be very close to the Bl (NaCl) structure of the mononitrides, but with a slight rhombohedral distortion. Additional evidence from noble gas incorporation (Ne, Ar, and Xe) supports a model of these higher nitrides as containing a large number of vacancies on the metal atom sites.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Toth, L. E., Transition Metal Carbides and Nitrides (Academic, New York, 1971); H. J. Goldschmidt, Interstitial Alloys (Plenum, New York, 1967).Google Scholar
2Johansson, B. O., Sundgren, J. E., Helmersson, U., and Hibbs, M. K., Appl. Phys. Lett. 44, 670 (1984); B. O. Johansson, Dissertation No. 122, Linköping Studies in Science and Technology, Linköping University, Sweden.CrossRefGoogle Scholar
3Cuomo, J. J., Leary, P. A., Yu, D., Reuter, W., and Frisch, M., J. Vac. Sei. Technol. 16, 299 (1979); F. T. J. Smith, J. Appl. Phys. 41, 4227 (1970); P. R. Aaron and A. Grill, Thin Solid Films 96, 87 (1982); Von R. Juza, A. Rabenau, and I. Nitschke, Z. Anorg. Allg. Chem. 332, 1 (1964).Google Scholar
4Harper, J. M. E., Cuomo, J. J., and Hentzell, H . T. G., Appl. Phys. Lett. 43, 547 (1983).Google Scholar
5Schwarz, K. H., Williams, A. R., Cuomo, J. J., Harper, J. M. E., and Hentzell, H. T. G., Phys. Rev. B 8, 5489 (1985).Google Scholar
6Kaufman, H. R., Cuomo, J. J., and Harper, J. M. E., J. Vac. Sci. Technol. 21, 725 (1982); J. M. E. Harper, J. J. Cuomo, and H. R. Kaufman, J. Vac. Sci. Technol. 21, 737 (1982).Google Scholar
7Harper, J. M. E., Cuomo, J. J., and Hentzell, H. T. G., J. Appl. Phys. 58, 550 (1985); H. T. G. Hentzell, J. M. E. Harper, and J. J. Cuomo, J. Appl. Phys. 58, 556 (1985).Google Scholar
8Sundgren, J. E., Johansson, B. O., Karlsson, S. E., and Hent-zell, H. T. G., Thin Solid Films 105, 367 (1983); M. Wittmer, B. Studer, and H. Melchior, J. Appl. Phys. 51, 5722 (1981).Google Scholar
9Ting, C. Y., J. Vac. Sci. Technol. 21, 14 (1982); M. Ostling, S. Nygren, C. S. Petersson, H. Norstrom, P. Wiklund, R. Buchta, H.-O. Blom, and S. Berg, J. Vac. Sci. Technol. A 2, 281 (1984).CrossRefGoogle Scholar
10Johansson, B. O. (unpublished results).Google Scholar
11Wimmer, E., Schwarz, K. H., Podloucky, R., Herzig, P., and Neckel, A., J. Phys. Chem. Solids 43, 439 (1982) .Google Scholar