Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T11:45:23.298Z Has data issue: false hasContentIssue false

High-concentration niobium (V) doping into TiO2 nanoparticles synthesized by thermal plasma processing

Published online by Cambridge University Press:  08 March 2011

Chenning Zhang
Affiliation:
Nano Ceramic Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan; and Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
Masashi Ikeda
Affiliation:
Nano Ceramic Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan; and Department of Materials Chemistry, Hosei University, Koganei, Tokyo 184-8584, Japan
Tetsuo Uchikoshi
Affiliation:
Nano Ceramic Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
Ji-Guang Li
Affiliation:
Nano Ceramic Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Takayuki Watanabe
Affiliation:
Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
Takamasa Ishigaki*
Affiliation:
Nano Ceramic Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan; and Department of Chemical Science and Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-concentration niobium (V)-doped titanium dioxide (TiO2) nanoparticles of the nonequilibrium chemical composition have been synthesized via Ar/O2 radio-frequency thermal plasma oxidation of mist precursor solutions with various Nb5+ concentrations (Nb/(Ti + Nb) = 0–25.0 at.%). The solubility as high as ∼25.0 at.% has not been achieved before by wet-chemical techniques. The preferable anatase formation was attained in the plasma-synthesized powders and was enhanced by the niobium doping. All the powders were heated at high temperatures (600–800 °C) to investigate their phase transformation, band gap variation, inter-particulate binding behavior, and photocatalytic stability. The transformation from anatase to rutile was effectively inhibited by increasing the Nb5+ content. The Nb5+ doping prevented the band gap of TiO2 from narrowing after the heating. At high temperatures, Nb5+ doping could not only preserve particle size but also prevent inter-particulate binding. High concentration (25.0 at.%) Nb5+ doping retained the photocatalytic performance almost invariably irrespective of being thermally treated.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Obee, T.N. and Brown, R.T.: TiO2 photocatalysis for indoor air applications-effects of humidity and trace contaminant lels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ. Sci. Technol. 29, 1223 (1995).CrossRefGoogle Scholar
2.Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 (2006).CrossRefGoogle Scholar
3.Ruiz, A.M., Cornet, A., Shimanoe, K., Morante, J.R., and Yamazoe, N.: Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sens. Actuators, B 108, 34 (2005).CrossRefGoogle Scholar
4.Li, J.G., Wang, X.H., Watanabe, K., and Ishigaki, T.: Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists. J. Phys. Chem. B 110, 1121 (2006).CrossRefGoogle ScholarPubMed
5.Li, J.G., Buechel, R., Isobe, M., Mori, T., and Ishigaki, T.: Cobalt-doped TiO2 nanocrystallites: Radio-frequency thermal plasma processing, phase structure, and magnetic properties. J. Phys. Chem. C 113, 8009 (2009).CrossRefGoogle Scholar
6.Wells, A.F.: Structural Inorganic Chemistry (Clarendon Press, Oxford, 1975).Google Scholar
7.Fukumura, T., Toyosaki, H., and Yamada, Y.: Magnetic oxide semiconductors. Semicond. Sci. Technol. 20, S103 (2005).CrossRefGoogle Scholar
8.Hu, Y., Tsai, H.L., and Huang, C.L.: Phase transformation of precipitated TiO2 nanoparticles. Mater. Sci. Eng. A-Struct. 344, 209 (2003).CrossRefGoogle Scholar
9.Shannon, R.D. and Pask, J.A.: Kinetics of anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391 (1965).CrossRefGoogle Scholar
10.Gennari, F.C. and Pasquevich, D.M.: Kinetics of the anatase rutile transformation in TiO2 in the presence of Fe2O3. J. Mater. Sci. 33, 1571 (1998).CrossRefGoogle Scholar
11.Watanabe, T., Nakajima, A., Wang, R., Minabe, M., Koizumi, S., Fujishima, A., and Hashimoto, K.: Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351, 260 (1999).CrossRefGoogle Scholar
12.Sopyan, I., Murasawa, S., Hashimoto, K., and Fujishima, A.: Highly efficient TiO2 film photocatalyst-degradation of gaseous acetaldehyde. Chem. Lett. 23, 723 (1994).CrossRefGoogle Scholar
13.Tanaka, K., Capule, M.F.V., and Hisanaga, T.: Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett. 187, 73 (1991).CrossRefGoogle Scholar
14.Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T.: Light-induced amphiphilic surfaces. Nature. 388, 431 (1997).CrossRefGoogle Scholar
15.Ruiz, A.M., Dezanneau, G., Arbiol, J., Cornet, A., and Morante, J.R.: Study of the influence of Nb content and sintering temperature on TiO2 sensing films. Thin Solid Films 436, 90 (2003).CrossRefGoogle Scholar
16.Ruiz, A.M., Dezanneau, G., Arbiol, J., Cornet, A., and Morante, J.R.: Insights into the structural and chemical modifications of Nb additive on TiO2 nanoparticles. Chem. Mater. 16, 862 (2004).CrossRefGoogle Scholar
17.Hoang, N.L.H., Yamada, N., Hitosugi, T., Kasai, J., Nakao, S., Shimada, T., and Hasegawa, T.: Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering. Appl. Phys. Express. 1, 115001 (2008).CrossRefGoogle Scholar
18.Yamada, N., Hitosugi, T., Hoang, N.L.H., Furubayashi, Y., Hirose, Y., Konuma, S., Shimada, T., and Hasegawa, T.: Structural, electrical and optical propel-ties of sputter-deposited Nb-doped TiO2 (TNO) polycrystalline films. Thin Solid Films 516, 5754 (2008).CrossRefGoogle Scholar
19.Hitosugi, T., Kamisaka, H., Yamashita, K., Nogawa, H., Furubayashi, Y., Nakao, S., Yamada, N., Chikamatsu, A., Kumigashira, H., Oshima, M., Hirose, Y., Shimada, T., and Hasegawa, T.: Electronic band structure of transparent conductor: Nb-doped anatase TiO2. Appl. Phys. Express. 1, 111203 (2008).CrossRefGoogle Scholar
20.Hirose, Y., Yamada, N., Nakao, S., Hitosugi, T., Shimada, T., and Hasegawa, T.: Large electron mass anisotropy in a d-electron-based transparent conducting oxide: Nb-doped anatase TiO2 epitaxial films. Phys. Rev. B 79, 165108 (2009).CrossRefGoogle Scholar
21.Hitosugi, T., Yamada, N., Hoang, N.L.H., Kasai, J., Nakao, S., Shimada, T., and Hasegawa, T.: Fabrication of TiO2-based transparent conducting oxide on glass and polyimide substrates. Thin Solid Films 517, 3106 (2009).CrossRefGoogle Scholar
22.Traversa, E., Di Vona, M.L., Licoccia, S., Sacerdoti, M., Carotta, M.C., Crema, L., and Martinelli, G.: Sol-gel processed TiO2-based nano-sized powders for use in thick-film gas sensors for atmospheric pollutant monitoring. J. Sol-Gel Sci. Technol. 22, 167 (2001).CrossRefGoogle Scholar
23.Arbiol, J., Cerda, J., Dezanneau, G., Cirera, A., Peiro, F., Cornet, A., and Morante, J.R.: Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J. Appl. Phys. 92, 853 (2002).CrossRefGoogle Scholar
24.Guidi, V., Carotta, M.C., Ferroni, M., Martinelli, G., and Sacerdoti, M.: Effect of dopants on grain coalescence and oxygen mobility in nanostructured titania anatase and rutile. J. Phys. Chem. B 107, 120 (2003).CrossRefGoogle Scholar
25.Sacerdoti, M., Dalconi, M.C., Carotta, M.C., Cavicchi, B., Ferroni, M., Colonna, S., and Di Vona, M.L.: XAS investigation of tantalum and niobium in nanostructured TiO2 anatase. J. Solid State Chem. 177, 1781 (2004).CrossRefGoogle Scholar
26.Ahmad, A., Buzby, S., Ni, C., and Shah, S.I.: Effect of Nb and Sc doping on the phase transformation of sol-gel processed TiO2 nanoparticles. J. Nanosci. Nanotechnol. 8, 2410 (2008).CrossRefGoogle ScholarPubMed
27.Ahmad, A., Shah, J.A., Buzby, S., and Shah, S.I.: Structural effects of codoping of Nb and Sc in titanium dioxide nanoparticles. Eur. J. Inorg. Chem. 948 (2008).CrossRefGoogle Scholar
28.Ishigaki, T. and Li, J.G.: Synthesis of functional TiO2-based nanoparticles in radio frequency induction thermal plasma. Pure Appl. Chem. 80, 1971 (2008).CrossRefGoogle Scholar
29.Ishigaki, T.: Synthesis of ceramic nanoparticles with non-equilibrium crystal structures and chemical compositions by controlled thermal plasma processing. J. Ceram. Soc. Jpn. 116, 1351 (2008).CrossRefGoogle Scholar
30.Li, Y.L. and Ishigaki, T.: Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation. J. Phys. Chem. B 108, 15536 (2004).CrossRefGoogle Scholar
31.Wang, X.H., Li, J.G., Kamiyama, H., Katada, M., Ohashi, N., Moriyoshi, Y., and Ishigaki, T.: Pyrogenic lron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: Phase formation, defect structure, band gap, and magnetic properties. J. Am. Chem. Soc. 127, 10982 (2005).CrossRefGoogle Scholar
32.Spurr, R.A. and Myers, H.: Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 29, 760 (1957).CrossRefGoogle Scholar
33.Li, J.G., Ikeda, M., Tang, C.C., Moriyoshi, Y., Hamanaka, H., and Ishigaki, T.: Chlorinated nanocrystalline TiO2 powders via one-step Ar/O2 radio frequency thermal plasma oxidizing mists of TiCl3 solution: Phase structure and photocatalytic performance. J. Phys. Chem. C 111, 18018 (2007).CrossRefGoogle Scholar
34.Yu, J.C., Yu, J.G., Ho, W.K., Jiang, Z.T., and Zhang, L.Z.: Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808 (2002).CrossRefGoogle Scholar
35.Hagfeldt, A. and Gratzel, M.: Light-induced redox reaction in nanocrystalline system. Chem. Rev. 95, 49 (1995).CrossRefGoogle Scholar
36.Latta, E.E. and Ronay, M.: Catalytic oxidation of niobium. Phys. Rev. Lett. 53, 948 (1984).CrossRefGoogle Scholar
37.Morris, D., Dou, Y., Rebane, J., Mitchell, C.E.J., Egdell, R.G., Law, D.S.L., Vittadini, A., and Casarin, M.: Photoemission and STM study of the electronic structure of Nb-doped TiO2. Phys. Rev. B 61, 13445 (2000).CrossRefGoogle Scholar
38.Qiu, C.L., Liu, L., Sun, M., and Zhang, S.M.: The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid. J. Biomed. Mater. Res. Part A 75, 950 (2005).CrossRefGoogle ScholarPubMed
39.Zhang, J.D., Fung, S., Lin, L.B., and Liao, Z.J.: Ti ion valence variation induced by ionizing radiation at TiO2/Si interface. Surf. Coat. Tech. 158, 238 (2002).CrossRefGoogle Scholar
40.Cho, C.R., Kim, J.P., Hwang, J.Y., Jeong, S.Y., Joh, Y.G., and Kim, D.H.: High resolution elemental and magnetic distribution mapping and chemical bonding states of Co:TiO2 films: A SAM, MFM and XPS study. Jpn. J. Appl. Phys. 43, L1323 (2004).CrossRefGoogle Scholar
41.Kröger, F.A. and Vink, H.J.: Relations between the concentrations of imperfections in crystalline solids. Solid State Phys. 3, 307 (1956).CrossRefGoogle Scholar
42.Li, Y.L. and Ishigaki, T.: Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt. J. Cryst. Growth 242, 511 (2002).CrossRefGoogle Scholar
43.Shannon, R.D.: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
44.Kamisaka, H., Hitosugi, T., Suenaga, T., Hasegawa, T., and Yamashita, K.: Density-functional theory based first-principle calculation of Nb-doped anatase TiO2 and its interactions with oxygen vacancies and interstitial oxygen. J. Chem. Phys. 131, 034702 (2009).CrossRefGoogle ScholarPubMed
45.Nogawa, H., Hitosugi, T., Chikamatsu, A., Nakao, S., Hirose, Y., Shimada, T., Kumigashira, H., Oshima, M., and Hasegawa, T.: Carrier compensation by excess oxygen atoms in anatase Ti0.94Nb0.06O2+δ epitaxial thin films. Jpn. J. Appl. Phys. 49, 041102 (2010).CrossRefGoogle Scholar
46.Akhtar, M.K., Pratsinis, S.E., and Mastrangelo, S.V.R.: Dopants in vapor-phase synthesis of titania powders. J. Am. Ceram. Soc. 75, 3408 (1992).CrossRefGoogle Scholar
47.Ogata, S., Iyetomi, H., Tsuruta, K., Shimojo, F., Nakano, A., Kalia, R.K., and Vashishta, P.: Role of atomic charge transfer on sintering of TiO2 nanoparticles: Variable-charge molecular dynamics. J. Appl. Phys. 88, 6011 (2000).CrossRefGoogle Scholar
48.Hishita, S., Mutoh, I., Koumoto, K., and Yanagida, H.: Inhibition mechanism of the anatase-rutile phase transformation by rare earth oxides. Ceram. Int. 9, 61 (1983).CrossRefGoogle Scholar
49.Li, J.G., Wang, X.H., Kamiyama, H., Ishigaki, T., and Sekiguchi, T.: RF plasma processing of Er-doped TiO2 luminescent nanoparticles. Thin Solid Films 506, 292 (2006).CrossRefGoogle Scholar
50.Vemury, S. and Pratsinis, S.E.: Dopants in flame synthesis of titania. J. Am. Ceram. Soc. 78, 2984 (1995).CrossRefGoogle Scholar
51.Barakat, M.A., Hayes, G., and Shah, S.I.: Effect of cobalt doping on the phase transformation of TiO2 nanoparticles. J. Nanosci. Nanotechnol. 5, 759 (2005).CrossRefGoogle ScholarPubMed
52.Zhang, Y.H., Chan, C.K., Porter, J.F., and Guo, W.: Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis. J. Mater. Res. 13, 2602 (1998).CrossRefGoogle Scholar
53.Parker, J.C. and Siegel, R.W.: Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes. J. Mater. Res. 5, 1246 (1990).CrossRefGoogle Scholar
54.Serpone, N., Lawless, D., and Khairutdinov, R.: Size effects on the photophysical properties of colloidal anatase TiO2 particles-size quantization or direct transitions in this indirect semiconductor. J. Phys. Chem. 99, 16646 (1995).CrossRefGoogle Scholar
55.Kormann, C., Bahnemann, D.W., and Hoffmann, M.R.: Preparation and characterization of quantum-size titanium-dioxide. J. Phys. Chem. 92, 5196 (1988).CrossRefGoogle Scholar
56.Rahman, M.M., Krishna, K.M., Soga, T., Jimbo, T., and Umeno, M.: Optical properties and x-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. J. Phys. Chem. Solids 60, 201 (1999).CrossRefGoogle Scholar
57.Yu, J.G., Yu, J.C., Ho, W.K., and Jiang, Z.T.: Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. N. J. Chem. 26, 607 (2002).CrossRefGoogle Scholar
58.Daude, N., Gout, C., and Jouanin, C.: Electronic band-structure of titanium-dioxide. Phys. Rev. B 15, 3229 (1977).CrossRefGoogle Scholar
59.Li, J.G., Yang, X., and Ishigaki, T.: Urea coordinated titanium trichloride TiIII[OC(NH)2]6Cl3: A single molecular precursor yielding highly visible light responsive TiO2 nanocrystallites. J. Phys. Chem. B 110, 14611 (2006).CrossRefGoogle ScholarPubMed
60.Sharma, R.K. and Bhatnagar, M.C.: Improvement of the oxygen gas sensitivity in doped TiO2 thick films. Sens. Actuators, B 56, 215 (1999).CrossRefGoogle Scholar
61.Hoffmann, M.R., Martin, S.T., Choi, W.Y., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
62.Bickley, R.I., Gonzalezcarreno, T., Lees, J.S., Palmisano, L., and Tilley, R.J.D.: A structural investigation of titanium-dioxide photocatalysis. J. Solid State Chem. 92, 178 (1991).CrossRefGoogle Scholar