Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:23:28.876Z Has data issue: false hasContentIssue false

High temperature transport properties of the high Tc superconductor, Y1Ba2Cu3Ox

Published online by Cambridge University Press:  31 January 2011

Han-Ill Yoo
Affiliation:
Department of Inorganic Materials Engineering, Seoul National University, Seoul 151-742, Korea
Get access

Abstract

The electrical conductivity and thermopower of the cuprate, Y1Ba2Cu3Ox, have been measured as functions of temperature and oxygen partial pressure over the ranges of 400 °C–700 °C and 10−4 atm—1 atm, respectively. It has been confirmed that, as temperature increases, conduction mechanism changes from metallic to p-type to n-type semiconducting. It has been found that the p-n transition occurs at a specific value for oxygen content (x = 6.35) irrespective of temperature and that the thermopower in the p-type region is insensitive to temperature. The latter leads to a charge transfer mechanism of correlated hopping of holes. Mechanisms of hole generation due to oxygen nonstoichiometry are found to be different in the tetragonal and the orthorhombic phase of the cuprate.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cava, R.J., Batlogg, B., R. B. van Dover, D.W. Murphy, S. Sunshine, T. Siegrist, J. P. Remeika, E. A. Rietman, S. Zahurak, and G. P. Espinosa, Phys. Rev. Lett. 58, 1676 (1987).Google Scholar
2Gallagher, P. K., H.M. O'Bryan, S.A. Sunshine, and D.W. Murphy, Mat. Res. Bull. 22, 995 (1987).Google Scholar
3Beyers, R., Engler, E. M., Grant, P.M., Parkin, S.S.P., Lim, G., ML. Ramirez, K. P. Roche, J.E. Vazquez, V. Y. Lee, R.D. Jacowitz, B.T. Ahn, T. M. Gur, and R. A. Huggins, Proc. High Temp. Superconductors (MRS, Boston, MA, 1987), p. 77.Google Scholar
4Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J.D., I. K. Schuller, C U . Segre, K. Zhang, and M.S. Kleefisch, Phys. Rev. 36, 3608 (1987).Google Scholar
5O'Bryan, H. M. and Gallagher, P. K., Adv. Ceram. Mat. 2, 640 (1987).Google Scholar
6Hatano, T., Matsushita, A., Nakamura, K., Sakka, Y., Matsumoto, T., and Ogawa, K., Jap. J. Appl. Phys. 26, L721 (1987).CrossRefGoogle Scholar
7Oda, M., Murakami, T., Enomoto, Y., and Suzuki, M., Jap. J. Appl. Phys. 26, L804 (1987).Google Scholar
8Cava, R. J., in Progr. High Temp. Superconductivity, Vol. 1, Proc. the Adriatico Res. Conf. High Temp. Superconductors, Trieste, Italy, July 58, 1987.Google Scholar
9Sawada, H., Iwazumi, T., Saito, Y., Abe, Y., Ikeda, H., and Yoshizaki, R., Jap. J. Appl. Phys. 26, L1054 (1987).Google Scholar
10Shafer, M.W., Penney, T., and Olson, B.L., Phys. Rev. B 36, 4047 (1987).Google Scholar
11Murakami, M., Teshima, H., Morita, M., and Matsuda, S., Jap. J. Appl. Phys. 26, L785 (1987).CrossRefGoogle Scholar
12Grant, P. M., Beyers, R. B., Engler, E. M., Lim, G., Parkin, S. S. P., Ramirez, M. L., Lee, V. Y., Nazzal, A., Vazquez, J. E., and Savoy, R. J., Phys. Rev. B. 35, 7242 (1987).Google Scholar
13Hinks, D.G., Soderholm, L., Capone, D.W. II, Jorgensen, J.D., Schuller, I.K., Segre, C. U., Zhang, K., and Grace, J.D., Appl. Phys. Lett. 50, 1688 (1987).Google Scholar
14Ahn, B.T., Gur, T. M., Huggins, R.A., Beyers, R., and Engler, E.M., Proc. Sym. Electroceramics and Solid State Ionics (Electrochem. Soc, Honolulu, HI, 1987), p. 112.Google Scholar
15Ahn, B.T., Gur, T. M., Huggins, R.A., Beyers, R., and Engler, E.M., Proc. Sym. High Temp. Superconductors (MRS, Boston, MA, 1987), p. 171.Google Scholar
16Choi, G. M., Tuller, H. L., and Tsai, M.-J., op. cit.Google Scholar
17Beyers, R., Lim, G., Engler, E.M., Lee, V. Y., Ramirez, M.L., Savoy, R.J., Jacowitz, R.D., Shaw, T. M., Placa, S. La, Boehme, R., Tsuei, C. C., Park, S.I., Shafer, M. W., Gallagher, W. J., and Chandrashekhar, G. V., Appl. Phys. Lett. 51, 614 (1987).CrossRefGoogle Scholar
18Gallagher, P. K., Adv. Ceram. Mat. 2, 632 (1987).Google Scholar
19Ginley, D. S., Nigrey, P. J., Venturini, E. L., Morosin, B., and Kwak, J. F., J. Mater. Res. 2, 732 (1987).CrossRefGoogle Scholar
20Morris, D. E., Scheven, U. M., Bourne, L. C., Cohen, M. L., Crommie, M. F., and Zettl, A., in Proc. Sym. S. MRS, Anaheim, CA, Apr. 23-24, 1987, pp. 209213.Google Scholar
21Evetts, J.E., Somekh, R.E., Blamire, M.G., Barber, Z. H., Butler, K., James, J. H., Morris, G. W., Tomlinson, E.J., Schwarzenberger, A. P., and Stobbs, W. M., op. cit., pp. 227229.Google Scholar
22See, for example, Tuller, H. L., in Nonstoichiometric Oxides, edited by Sorensen, O.T. (Academic Press, New York, 1981), pp. 271335.CrossRefGoogle Scholar
23Freitas, P. P. and Plaskett, T. S., Phys. Rev. B 36, 5723 (1987).Google Scholar
24Yoo, H.-I. and Tuller, H. L., J. Mater. Res. 3, 552 (1988).CrossRefGoogle Scholar
25Wagner, C., Prog. Solid State Chem. 7, 1 (1972).CrossRefGoogle Scholar
26Cooper, J. R., Alavi, B., Zhou, L.-W., Beyermann, W. P., and Gruner, G., Phys. Rev. B 35, 8794 (1987).Google Scholar
27Dunn, B., Chu, C.T., Zhou, L.-W., Cooper, J.R., and Gruner, G., Adv. Ceram. Mat. 2, 343 (1987).Google Scholar
28Chaikin, P.M. and Beni, G., Phys. Rev. B 13, 647 (1976).CrossRefGoogle Scholar
29Heikes, R.R., in Thermoelectricity, edited by Egli, P. H. (John Wiley & Sons, New York, 1960), pp. 92105.Google Scholar