Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T11:26:46.578Z Has data issue: false hasContentIssue false

High dose neutron irradiation damage in alpha alumina

Published online by Cambridge University Press:  31 January 2011

R.A. Youngman
Affiliation:
BP Research, 4440 Warrensville Center Road, Cleveland, Ohio 44128
T.E. Mitchell
Affiliation:
Los Alamos National Laboratory, Center for Materials Science, Los Alamos, New Mexico 87545
F.W. Clinard Jr.
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, New Mexico 87545
G.F. Hurley
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, New Mexico 87545
Get access

Abstract

Bulk samples of single crystalline and polycrystalline alpha alumina have been neutron-irradiated in the Experimental Breeder Reactor-II (EBR-II) to doses of 1026 n/m2 at temperatures of 925 K and 1100 K. The samples were found to swell macroscopically between 3% and 6%, depending on the temperature of irradiation and the form of the material. The damaged microstructures were investigated via transmission electron microscopy in order to understand the origin of the macroscopic swelling. In both single crystals and polycrystals the damage consists of a high density of dislocations containing predominately b = 1/3<101> dislocation loops on the (0001) planes coexistent with a high density of voids, which are aligned along the c-axis in this rhombohedral material. The established theory of void formation in metals is utilized to explain the formation of voids in alumina. The polycrystalline samples were extensively microcracked, and this is thought to be due to anisotropic swelling of the grains which in turn leads to stresses and fracturing at the grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Clinard, F. W. and Hobbs, L. W., Physics of Radiation Effects in Crystals edited by Johnson, R. A. and Orlov, A. N. (Elsevier Science Publishers, Amsterdam, 1986), Chap. 7, pp. 387471.Google Scholar
2.Wilks, R. S., Desport, J. A., and Bradley, R., Proc. Brit. Ceram. Soc. 7, 403 (1967).Google Scholar
3.Wilks, R. S., J. Nucl. Mater. 26, 137 (1968).CrossRefGoogle Scholar
4.Barber, D. J. and Tighe, N. J., J. Am. Ceram. Soc. 51, 611 (1968).CrossRefGoogle Scholar
5.Clinard, F. W., Bunch, J. M., and Ranken, W. A., in Radiation Effects and Tritium Technology, USERDA Conference 750989, 1975, Vol. 2, 489: LASL Report LA-UR 75–1840 (1975).Google Scholar
6.Clinard, F. W., Hobbs, L. W., and Hurley, G. F., J. Nucl. Mater. 108/109, 655 (1982).Google Scholar
7.Gulden, T. D., J. Appl. Phys. 37, 2915 (1966); Philos. Mag. 14, 453 (1967); Mater. Res. Bull. II, 49 (1967); J. Nucl. Mater. Radiat. 26, 137 (1968).Google Scholar
8.Rechtin, M. D. and Taylor, A., Radiat. Eff. 42, 129 (1979).CrossRefGoogle Scholar
9.Lee, W. E., Jenkins, M. L., and Pells, G. P., Philos. Mag. A 51, 639 (1985).Google Scholar
10.Barnard, R. S., Ph.D. Thesis, Case Western Reserve University, Cleveland, OH (1977).Google Scholar
11.Howitt, D. G. and Mitchell, T. E., Philos. Mag. 44, 229 (1981).CrossRefGoogle Scholar
12.Pells, G. P. and Phillips, D. C., J. Nucl. Mater. 80, 207 (1979).CrossRefGoogle Scholar
13.Bunch, J. M., Hoffman, J. G., and Zeltmann, A. H., J. Nucl. Mater. 73, 65 (1978).CrossRefGoogle Scholar
14.Pauling, L. and Hendricks, S. B., J. Amei. Chem. Soc. 47, 781 (1925).CrossRefGoogle Scholar
15.Newnham, R. E. and deHaan, Y. M., Acta Krist. 117, 235 (1962).CrossRefGoogle Scholar
16.Kronberg, M. L., Acta Metall. 5, 507 (1957).Google Scholar
17.Snow, J. D. and Heuer, A. H., J. Am. Ceram. Soc. 56, 153 (1973).CrossRefGoogle Scholar
18.Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (Wiley- Interscience, New York, 1982).Google Scholar
19.Brailsford, A. D. and Bullough, R., J. Nucl. Mater. 69/70, 434 (1978).CrossRefGoogle Scholar
20.Cottrell, A. H. and Bilby, B. A., Proc. Phys. Soc. 62, 49 (1949).Google Scholar
21.Russell, K., Acta Metall. 26, 1615 (1978).Google Scholar
22.Evans, J. H., Nature 229, 403 (1971).Google Scholar
23.Eyre, B. L. and Bartlett, A. F., J. Nucl. Mater. 47, 143 (1973).CrossRefGoogle Scholar
24.Sikka, V. K. and Moteff, J., J. Appl. Phys. 43, 4942 (1972).CrossRefGoogle Scholar
25.Kulcinski, G. L., Brimhall, J. L., and Kissinger, H. E., J. Nucl. Mater. 40, 166 (1971).CrossRefGoogle Scholar
26.Risbett, A. and Levy, V., J. Nucl. Mater. 50, 116 (1974).CrossRefGoogle Scholar
27.Price, R. J., J. Nucl. Mater. 48, 47 (1973).Google Scholar
28.Evans, J. H., Radiat. Eff. 17, 69 (1973).CrossRefGoogle Scholar
29.Foreman, A.J.E., Harwell Research Report #R7135 (Harwell: AERE) (1972).Google Scholar
30.Stoneham, A. M., in The Physics of Irradiation Produced Voids, edited by Nelson, R. S., Harwell Research Report #R7934 (Harwell: AERE), 319 (1975).Google Scholar
31.Youngman, R. A., “Neutron Irradiation Damage in Ceramic Solids,” Ph. D. Thesis (Case Western Reserve University, Cleveland, OH, 1982)Google Scholar