Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T03:08:18.431Z Has data issue: false hasContentIssue false

Hierarchical mesoporous Zn–Ni–Co–S microspheres grown on reduced graphene oxide/nickel foam for asymmetric supercapacitors

Published online by Cambridge University Press:  02 July 2019

Uwamahoro Evariste
Affiliation:
National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, People’s Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, People’s Republic of China; and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
Guohua Jiang*
Affiliation:
National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, People’s Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, People’s Republic of China; Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China; and Department of Polymer Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
Bo Yu
Affiliation:
National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, People’s Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, People’s Republic of China; and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
Yongkun Liu
Affiliation:
National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, People’s Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, People’s Republic of China; and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
Zheng Huang
Affiliation:
Department of Polymer Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
Qiuling Lu
Affiliation:
Department of Polymer Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
Pianpian Ma*
Affiliation:
National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, People’s Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, People’s Republic of China; Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China; and Department of Polymer Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

In this work, hierarchical mesoporous Zn–Ni–Co–S–rGO/NF microspheres have been prepared by hydrothermal, sulfurization, and subsequent calcination process. The effect of different sulfurization time on the morphology and capacitance of composites was tested. The high electrochemical performance of (Zn–Ni–Co–S–rGO/NF) composite was obtained when the sulfurization time was 3 h (Zn–Ni–Co–S–rGO/NF-3h), where a specific capacitance of 627.7 F/g at 0.25 A/g and excellent rate capability of about 97.8% capacitance retention at 2 A/g after 4000 cycles were achieved. Moreover, an asymmetric supercapacitor fabricated by (Zn–Ni–Co–S–rGO/NF-3h) composite and activated carbon (AC) as the positive and the negative electrodes, respectively, showed a high energy density of 75.96 W h/kg at a power density of 362.49 W/kg with a remarkable cycle stability performance of 91.2% capacitance retention over 5000 cycles. This incredible electrochemical behavior illustrates that the hierarchical mesoporous Zn–Ni–Co–S–rGO/N-3h microsphere electrodes are promising electrode materials for application in high-performance supercapacitors.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gao, J., Xuan, H., Xu, Y., Liang, T., Han, X., Yang, J., Han, P., Wang, D., and Du, Y.: Interconnected network of zinc–cobalt layered double hydroxide stick onto rGO/nickel foam for high performance asymmetric supercapacitors. Electrochim. Acta 286, 92 (2018).CrossRefGoogle Scholar
Yi, T-F., Wu, J-Z., Xie, Y., and Luo, S.: Hierarchical mesoporous flower-like ZnCo2O4@NiO nanoflakes grown on nickel foam as high-performance electrodes for supercapacitors. Electrochim. Acta 284, 128 (2018).CrossRefGoogle Scholar
Li, D-J., Lei, S., Wang, Y-Y., Chen, S., Kang, Y., Gu, Z-G., and Zhang, J.: Helical carbon tubes derived from epitaxial Cu-MOF coating on textile for enhanced supercapacitor performance. Dalton Trans. 47, 5558 (2018).CrossRefGoogle ScholarPubMed
Chen, C., Yan, D., Luo, X., Gao, W., Huang, G., Han, Z., Zeng, Y., and Zhu, Z.: Construction of core–shell NiMoO4@Ni–Co–S nanorods as advanced electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 10, 4662 (2018).CrossRefGoogle ScholarPubMed
Beka, L.G., Xia, X., and Liu, W.: 3D flower-like CoNi2S4 grown on graphene decorated nickel foam as high performance supercapacitor. Diamond Relat. Mater. 73, 169 (2017).CrossRefGoogle Scholar
Chai, Z., Wang, Z., Wang, J., Li, X., and Guo, H.: Potentiostatic deposition of nickel–cobalt sulfide nanosheet arrays as binder-free electrode for high-performance pseudocapacitor. Ceram. Int. 13, 15778 (2018).CrossRefGoogle Scholar
Yumak, T., Bragg, D., and Sabolsky, E.M.: Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide/activated carbon composites for supercapacitor applications. Appl. Surf. Sci. 469, 983 (2019).CrossRefGoogle Scholar
Yang, Y.J. and Li, W.: Hierarchical Ni–Co double hydroxide nanosheets on reduced graphene oxide self-assembled on Ni foam for high-energy hybrid supercapacitors. J. Alloys Compd. 776, 543 (2019).CrossRefGoogle Scholar
Jiang, X., Cheng, W., Hu, H., Hu, Y., Cao, Y., Yan, S., Di, R., Wang, X., and Hou, L.: Facile preparation of a novel composite Co–Ni(OH)2/carbon sphere for high-performance supercapacitors. Mater. Technol. 34, 204 (2018).CrossRefGoogle Scholar
Li, X-X., Wang, X-T., Xiao, K., Ouyang, T., Li, N., and Liu, Z-Q.: In situ formation of consubstantial NiCo2S4 nanorod arrays toward self-standing electrode for high activity supercapacitors and overall water splitting. J. Power Sources 402, 116 (2018).CrossRefGoogle Scholar
Cheng, C., Zhang, X., Wei, C., Liu, Y., Cui, C., Zhang, Q., and Zhang, D.: Mesoporous hollow ZnCo2S4 core–shell nanospheres for high performance supercapacitors. Ceram. Int. 44, 17464 (2018).CrossRefGoogle Scholar
Smirnov, M.A., Tarasova, E.V., Vorobiov, V.K., Kasatkin, I.A., Mikli, V., Sokolova, M.P., Bobrova, N.V., Vassiljeva, V., Krumme, A., and Yakimanskiy, A.V.: Electroconductive fibrous mat prepared by electrospinning of polyacrylamide-g-polyaniline copolymers as electrode material for supercapacitors. J. Mater. Sci. 54, 4859 (2018).CrossRefGoogle Scholar
Wu, X., Meng, L., Wang, Q., Zhang, W., and Wang, Y.: A novel inorganic-conductive polymer core–sheath nanowire arrays as bendable electrode for advanced electrochemical energy storage. Chem. Eng. J. 358, 1464 (2019).CrossRefGoogle Scholar
Heydari, H., Moosavifard, S.E., Shahraki, M., and Elyasi, S.: Facile synthesis of nanoporous CuS nanospheres for high-performance supercapacitor electrodes. J. Energy Chem. 26, 762 (2017).CrossRefGoogle Scholar
Yuan, X., Tang, B., Sui, Y., Huang, S., Qi, J., Pu, Y., Wei, F., He, Y., Meng, Q., and Cao, P.: CuCo2S4 nanotubes on carbon fiber papers for high-performance all-solid-state asymmetric supercapacitors. J. Mater. Sci.: Mater. Electron. 29, 8636 (2018).Google Scholar
Yang, S., Han, Z., Sun, J., Yang, X., Hu, X., Li, C., and Cao, B.: Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode. Electrochim. Acta 20, 268 (2018).Google Scholar
Sanchez, J.S., Pendashteh, A., Palma, J., Anderson, M., and Marcilla, R.: Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices. Electrochim. Acta 44, 279 (2018).Google Scholar
Yuksel, R., Kaplan, B.Y., Bicer, E., Yurum, A., Gursel, S.A., and Unalan, H.E.: All-carbon hybrids for high performance supercapacitors. Int. J. Energy Res. 42, 3575 (2018).CrossRefGoogle Scholar
Xu, W., Lu, J., Huo, W., Li, J., Wang, X., Zhang, C., Gu, X., and Hu, C.: Direct growth of CuCo2S4 nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation. Nanoscale 10, 14304 (2018).CrossRefGoogle ScholarPubMed
Meng, Y., Sun, P., He, W., Teng, B., and Xu, X.: Construction of hierarchical Co–Ni–S nanosheets as free-standing electrode for superior-performance asymmetric supercapacitors. Appl. Surf. Sci. 470, 792 (2019).CrossRefGoogle Scholar
Wang, P., Zhang, Y., Guan, B., Fan, L., Zhang, N., and Sun, K.: Fabrication of CuCo2S4 hollow sphere @N/S doped graphene composites as high performance anode materials for lithium-ion batteries. Ceram. Int. 44, 11905 (2018).CrossRefGoogle Scholar
Jin, R., Cui, Y., Gao, S., Zhang, S., Yang, L., and Li, G.: CNTs@NC@CuCo2S4 nanocomposites: An advanced electrode for high performance lithium-ion batteries and supercapacitors. Electrochim. Acta 43, 273 (2018).Google Scholar
Zhao, F., Huang, W., Zhang, H., and Zhou, D.: Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors. Appl. Surf. Sci. 426, 1206 (2017).CrossRefGoogle Scholar
Huang, Y., Quan, L., Liu, T., Chen, Q., Cai, D., and Zhan, H.: Construction of MOF-derived hollow Ni–Zn–Co–S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density. Nanoscale 10, 14171 (2018).CrossRefGoogle ScholarPubMed
Liu, Y., Jiang, G., Sun, S., Xu, B., Zhou, J., Zhang, Y., and Yao, J.: Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors. J. Alloys Compd. 731, 560 (2018).CrossRefGoogle Scholar
Shen, L., Yu, L., Wu, H.B., Yu, X-Y., Zhang, X., and Lou, X.W.D.: Formation of nickel–cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015).CrossRefGoogle ScholarPubMed
Xu, R., Lin, J., Wu, J., Huang, M., Fan, L., He, X., Wang, Y., and Xu, Z.: A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 422, 597 (2017).CrossRefGoogle Scholar
Chen, L., Zuo, Y., Zhang, Y., and Gao, Y.: Facile synthesis of ultrathin CuCo2S4 nanosheets for high-performance supercapacitors. Int. J. Electrochem. Sci. 17, 1343 (2018).CrossRefGoogle Scholar
Liu, Y., Lu, Q., Huang, Z., Sun, S., Yu, B., Evariste, U., Jiang, G., and Yao, J.: Electrodeposition of Ni–Co–S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J. Alloys Compd. 762, 301 (2018).CrossRefGoogle Scholar
Sahoo, S., Naik, K.K., Late, D.J., and Rout, C.S.: Electrochemical synthesis of a ternary transition metal sulfide nanosheets on nickel foam and energy storage application. J. Alloys Compd. 154, 695 (2017).Google Scholar
Tao, K., Han, X., Cheng, Q., Yang, Y., Yang, Z., Ma, Q., and Han, L.: A zinc cobalt sulfide nanosheet array derived from a 2D bimetallic metal-organic frameworks for high-performance supercapacitors. Chem. – Eur. J. 24, 12581 (2018).CrossRefGoogle ScholarPubMed
Balamurugan, J., Li, C., Peera, S.G., Kim, N.H., and Lee, J.H.: High-energy asymmetric supercapacitors based on free-standing hierarchical Co–Mo–S nanosheets with enhanced cycling stability. Nanoscale 9, 13747 (2017).CrossRefGoogle ScholarPubMed
Han, X., Xuan, H., Gao, J., Liang, T., Yang, J., Xu, Y., Han, P., and Du, Y.: Construction of manganese-cobalt-sulfide anchored onto rGO/Ni foam with a high capacity for hybrid supercapacitors. Electrochim. Acta 33, 288 (2018).Google Scholar
Lin, J., Yan, S., Liu, P., Chang, X., Yao, L., Lin, H., Lu, D., and Han, S.: Facile synthesis of CoNi2S4/graphene nanocomposites as a high-performance electrode for supercapacitors. Res. Chem. Intermed. 44, 4503 (2018).CrossRefGoogle Scholar
Shen, J., Xu, X., Dong, P., Zhang, Z., Baines, R., Ji, J., Pei, Y., and Ye, M.: Design and synthesis of three-dimensional needle-like CoNi2S4/CNT/graphene nanocomposite with improved electrochemical properties. Ceram. Int. 42, 8120 (2016).CrossRefGoogle Scholar
Fulari, A.V., Reddy, M.V.R., Jadhav, S.T., Ghodake, G.S., Kim, D.Y., and Lohar, G.M.: TiO2/reduced graphene oxide composite based nano-petals for supercapacitor application: Effect of substrate. J. Mater. Sci.: Mater. Electron. 29, 10814 (2018).Google Scholar
Huang, K-J., Zhang, J-Z., Liu, Y., and Liu, Y-M.: Synthesis of reduced graphene oxide wrapped copper sulfide hollow spheres as electrode material for supercapacitor. Int. J. Hydrogen Energy 40, 10158 (2015).CrossRefGoogle Scholar
Wan, L., Shen, J., Zhang, Y., and Li, X.: Novel ZnMoO4/reduced graphene oxide hybrid as a high-performance anode material for lithium-ion batteries. J. Alloys Compd. 708, 713 (2017).CrossRefGoogle Scholar
Gong, Y., Zhao, J., Wang, H., and Xu, J.: CuCo2S4/reduced graphene oxide nanocomposites synthesized by one-step solvothermal method as anode materials for sodium ion batteries. Electrochim. Acta 292, 895 (2018).CrossRefGoogle Scholar
Zhang, G., Chen, Y., Huang, K., Chen, Y., and Guo, H.: CMK-3/NiCo2S4 nanostructures for high performance asymmetric supercapacitors. Mater. Chem. Phys. 220, 270 (2018).CrossRefGoogle Scholar
Alam, S.N., Sharma, N., and Kumar, L.: Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6, 18 (2017).CrossRefGoogle Scholar
Li, C., Balamurugan, J., Kim, N.H., and Lee, J.H.: Hierarchical Zn–Co–S nanowires as advanced electrodes for all solid state asymmetric supercapacitors. Adv. Energy Mater. 8, 754 (2018).Google Scholar
Vignesh, V. and Navamathavan, R.: Spherical-like ball-by-ball architecture of Ni–Co–Zn–S electrodes for electrochemical energy storage application in supercapacitors. J. Electrochem. Soc. 13, 434 (2017).CrossRefGoogle Scholar
Wang, F., Zheng, J., Li, G., Ma, J., Yang, C., and Wang, Q.: Microwave synthesis of mesoporous CuCo2S4 nanoparticles for supercapacitor applications. Mater. Chem. Phys. 215, 761 (2018).CrossRefGoogle Scholar
Lv, Y., Liu, A., Shi, Z., Che, H., Mu, J., Guo, Z., and Zhang, X.: Construction of hierarchical zinc cobalt sulfide@nickel sulfide core–shell nanosheet arrays for high-performance asymmetric solid-state supercapacitors. Chem. Eng. J. 349, 12 (2018).CrossRefGoogle Scholar
He, W., Liang, Z., Ji, K., Sun, Q., Zhai, T., and Xu, X.: Hierarchical Ni–Co–S@Ni–W–O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors. Nano Res. 11, 121 (2018).CrossRefGoogle Scholar
Lin, L., Li, L., Hussain, S., Zhao, S., Wu, L., Peng, X., and Hu, N.: Hierarchical 3D NiCo2O4@ZnWO4 core–shell structures as binder-free electrodes for all-solid-state supercapacitors. Appl. Surf. Sci. 452, 397 (2018).CrossRefGoogle Scholar
Tong, H., Bai, W., Yue, S., Gao, Z., Lu, L., Shen, L., Dong, S., Zhu, J., He, J., and Zhang, X.: Zinc cobalt sulfide nanosheets grown on nitrogen-doped graphene/carbon nanotube film as a high-performance electrode for supercapacitors. J. Mater. Chem. 4, 1415 (2016).Google Scholar
Liu, W., Niu, H., Yang, J., Cheng, K., Ye, K., Zhu, K., Wang, G., Cao, D., and Yan, J.: Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 30, 113 (2018).Google Scholar
Zhou, H., Yan, Z., Yang, X., Lv, J., Kang, L., and Liu, Z-H.: RGO/MnO2/polypyrrole ternary film electrode for supercapacitor. Mater. Chem. Phys. 13, 177 (2016).Google Scholar
Zhang, S-W., Yin, B-S., Liu, C., Wang, Z-B., and Gu, D-M.: Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core–shell heterostructured nanobelts for supercapacitor. Chem. Eng. J. 312, 12256 (2017).CrossRefGoogle Scholar
Zhao, J., Li, C., Zhang, Q., Zhang, J., Wang, X., Sun, J., Wang, J., Xie, J., Lu, C., Lu, W., and Yao, Y.: All-solid-state hybrid supercapacitors based on ZnCo2O4 nanowire arrays and carbon nanorod electrode materials. Carbon 123, 40 (2017).CrossRefGoogle Scholar
Sivakumar, P., Jana, M., Kota, M., Jung, M.G., Gedanken, A., and Park, H.S.: Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application. J. Power Sources 402, 290 (2018).CrossRefGoogle Scholar
Feng, Y., Liu, W., Sun, L., Zhu, Y., Chen, Y., Meng, M., Li, J., Yang, J., Zhang, Y., and Liu, K.: Hierarchical MnCo2O4@CoMoO4 core–shell nanowire arrays supported on Ni foam for supercapacitor. J. Alloys Compd. 753, 676 (2018).CrossRefGoogle Scholar
Wang, Y., Zhang, M., Li, Y., Ma, T., Liu, H., Pan, D., Wang, X., and Wang, A.: Rational design 3D nitrogen-doped graphene supported spatial crosslinked Co3O4@NiCo2O4 on nickel foam for binder-free supercapacitor electrodes. Electrochim. Acta 290, 147 (2018).CrossRefGoogle Scholar
Rahimia, S., Shahrokhian, S., and Hosseini, H.: Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays-nickel plate current collector as a binder-free electrode for fabrication of highly performance supercapacitors. J. Electroanal. Chem. 810, 78 (2018).CrossRefGoogle Scholar
Yu, M., Li, X., Ma, Y., Liu, R., Liu, J., and Li, S.: Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybrid electrodes for high-rate capability supercapacitors. Appl. Surf. Sci. 396, 1816 (2017).CrossRefGoogle Scholar
Zheng, Y., Xu, J., Yang, X., Zhang, Y., Shang, Y., and Hu, X.: Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core–shell heterostructure material for high-performance asymmetric supercapacitor. Chem. Eng. J. 333, 111 (2018).CrossRefGoogle Scholar
Hussain, S., Liu, T., Javed, M.S., Aslam, N., Shaheen, N., Zhao, S., Zeng, W., and Wang, J.: Amaryllis-like NiCo2S4 nanoflowers for high-performance flexible carbon-fiber-based solid-state supercapacitor. Ceram. Int. 42, 11851 (2016).CrossRefGoogle Scholar
Supplementary material: File

Evariste et al. supplementary material

Figures S1-S4 and Tables S1-S2

Download Evariste et al. supplementary material(File)
File 3.7 MB