Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T19:26:10.686Z Has data issue: false hasContentIssue false

Heteroepitaxy of cubic zirconia on basal and prismatic planes of sapphire

Published online by Cambridge University Press:  03 March 2011

M.G. Cain
Affiliation:
Materials Department, College of Engineering, University of California—Santa Barbara, Santa Barbara, California 93106
F.F. Lange
Affiliation:
Materials Department, College of Engineering, University of California—Santa Barbara, Santa Barbara, California 93106
Get access

Abstract

The epitaxial growth of yttria stabilized cubic zirconia produced via the solution precursor route deposited onto the basal and prismatic planes of sapphire was characterized. The evolution of the polycrystalline thin film was described with reference to two concurrent physical processes: abnormal grain growth due to the growth of grains with preferred orientations and a morphological instability which resulted in an uncovering of the substrate. X-ray diffraction, electron backscattering patterns (EBSP), and transmission electron microscopy (TEM) (plan- and cross-sectional view) were used to determine the epitaxial relation (normal and in-plane). The observed epitaxial orientations for the two substrate planes are listed in Table I. A computer search was used to determine the planar, near coincident site lattices (NCSL) for the observed normal epitaxial relations (c-plane: [001]ZrO2ll[0001]Al2O3; a-plane: [001]ZrO2‖[1210[Al2O3). The determined NCSL's did include all the observed epitaxial relations, but also included others not observed within the same range of misfit and coincident site density.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mantese, J. V., Micheli, A. L., Hamdi, A. H., and Vest, R. W., MRS Bull. XIV (10), 4853 (1989).CrossRefGoogle Scholar
2Lange, F. F., Chemical Processing of Advanced Materials, edited by Hench, L. L. and West, J. K. (John Wiley and Sons, New York, 1992), pp. 611626.Google Scholar
3Lange, F. F., Proc. Recrystallization '92, edited by Fuentes, M. and Gil Sevillano, J. (Trans Tech Publications, Germany, UK, USA, 1992).Google Scholar
4Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, C. P., Geis, M. W., Harbison, J. P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852894 (1990).CrossRefGoogle Scholar
5Miller, K. T. and Lange, F. F., in Processing Science of Advanced Ceramics, edited by Aksay, I. A., McVay, G. L., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA, 1989), pp. 191199.Google Scholar
6Miller, K. T., Chan, C. J., Cain, M. G., and Lange, F. F., J. Mater. Res. 8, 169177 (1993).CrossRefGoogle Scholar
7Vaidya, K. J., Yang, C. Y., DeGraef, M., and Lange, F. F., J. Mater. Res. 9, 410419 (1994).CrossRefGoogle Scholar
8Miller, K. T. and Lange, F. F., J. Mater. Res. 6, 23872392 (1991).CrossRefGoogle Scholar
9Thompson, C. V., Annu. Rev. Mater. Sci. 20, 245268 (1990).CrossRefGoogle Scholar
10Miller, K. T., Lange, F. F., and Marshall, D. B., J. Mater. Res. 5, 151160 (1990).CrossRefGoogle Scholar
11Evans, A. G., Drory, M. D., and Hu, M. S., J. Mater. Res. 3, 10431049 (1988).CrossRefGoogle Scholar
12Mazerolles, L., Michel, D., and Portier, R., J. Am. Ceram. Soc. 69 (3), 252255 (1986).CrossRefGoogle Scholar
13Lee, W. E. and Lagerlof, K. P. D., J. Electron Microsc. Technique 2, 247258 (1985).CrossRefGoogle Scholar
14Tuohig, W. D. and Tien, T. Y., J. Am. Ceram. Soc. 63 (9–10), 595596 (1980).CrossRefGoogle Scholar
15Scott, H. G., J. Aust. Ceram. Soc. 17 (1), 1620 (1981).Google Scholar
16Leung, D. K., Chan, C-J., Riihle, M., and Lange, F. F., J. Am. Ceram. Soc. 74 (11), 27862792 (1991).CrossRefGoogle Scholar
17Venables, J. A. and Harland, C. J., Philos. Mag. 27, 11931200 (1973).CrossRefGoogle Scholar
18Alam, M. N., Blackman, M., and Pashley, D. W., Proc. R. Soc. London A 221, 224242 (1954).Google Scholar
19Balluffi, R. W., Brokman, A., and King, A. H., Acta Metall. 30, 14531470 (1982).CrossRefGoogle Scholar
20Navaco, A. D. and McTague, J. P., Phys. Rev. Lett. 38, 1286 (1977).CrossRefGoogle Scholar
21Bohr, J. and Grey, F., Condensed Mat. News 1 (3), 1215 (1992).Google Scholar
22Geis, M. W., Antoniadis, D. A., Silversmith, D. J., Mountain, R. W., and Smith, H. I., Appl. Phys. Lett. 37, 454456 (1980).CrossRefGoogle Scholar
23Wu, X. D., Muenchausen, R. E., Nogar, N. S., Pique, A., R.Edwards, Wilkens, B., Ravi, T. S., Hwang, D. M., and Chen, C. Y., Appl. Phys. Lett. 58 (3), 304306 (1991).CrossRefGoogle Scholar