Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T05:31:11.642Z Has data issue: false hasContentIssue false

Heteroepitaxial growth of tungsten oxide films on silicon(100) using a BaF2 buffer layer

Published online by Cambridge University Press:  31 January 2011

L.D. Doucette
Affiliation:
Laboratory for Surface Science and Technology, University of Maine, Orono, Maine 04469
F. Santiago
Affiliation:
Naval Surface Warfare Center, Dahlgren Division, Dahlgren, Virginia 22448
S.L. Moran
Affiliation:
Naval Surface Warfare Center, Dahlgren Division, Dahlgren, Virginia 22448
R.J. Lad
Affiliation:
Laboratory for Surface Science and Technology, University of Maine, Orono, Maine 04469
Get access

Abstract

Multidomained heteroepitaxial WO3 films were grown on Si(100) substrates using a (111)-oriented BaF2 buffer layer at the WO3–Si interface. The 30-nm-thick BaF2 layer, grown by very low rate molecular-beam epitaxy, consisted of four equivalent crystalline domains oriented about the BaF2[111] axis, which provided templates for heteroepitaxial WO3 film growth. The WO3 films were grown by electron cyclotron resonance oxygen plasma-assisted electron beam evaporation of a WO3 source, and the temperature range was varied between 25°C and 600°C. At an optimal deposition temperature of approximately 450°C, monoclinic-phase WO3 films were produced, which consisted of coexisting (002), (020), and (200) in-plane orientations with respect to the BaF2(111)/Si(100) substrate. During growth, an interfacial barium tungstate (BaWO4) reaction product formed at the WO3–BaF2 interface. The {112} planes of this BaWO4 layer also have a multidomained heteroepitaxial orientation with respect to the BaF2(111) buffer layer. Postdeposition annealing experiments in air for 24 h at 400°C indicated that the heteroepitaxial BaWO4 and WO3 layers remain stable. A thermodynamic argument is used to explain the BaWO4 interfacial reaction during initial growth stages, and kinetically limited diffusion processes through the BaWO4layer coupled with lattice matching across the WO3–BaWO4 interface are proposed to be responsible for the formation of stable WO3 films at later growth stages.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Miyake, K., Kaneko, H., Sano, M., and Suedomi, N., J. Appl. Phys. 55, 2747 (1984).CrossRefGoogle Scholar
2.Agrawal, A. and Habibi, H., Thin Solid Films 169, 257 (1989).CrossRefGoogle Scholar
3.Marszalek, K., Thin Solid Films 175, 227 (1989).Google Scholar
4.Murray, S.F. and Calabrese, S.J., Lubr. Eng. 49, 387 (1993).Google Scholar
5.Greenwood, O.D., Moulzolf, S.C., Blau, P.J., and Lad, R.J., Wear 232, 84 (1999).Google Scholar
6.Barrett, E.P.S., Georgiades, G.C., and Sermon, P.A., Sens. Actuators B 1, 116 (1990).CrossRefGoogle Scholar
7.Smith, D.J., Vetelino, J.F., Falconer, R.S., and Wittman, E.L., Sens. Actuators B 13–14, 264 (1993).Google Scholar
8.Antonik, M.D., Schneider, J.E., Wittman, E.L., Snow, K., and Lad, R.J., Thin Solid Films 256, 247 (1995).Google Scholar
9.Penza, M., Martucci, C., and Cassano, G., Sens. Actuators B 50, 52 (1998).Google Scholar
10.Penza, M. and Vasanelli, L, Sens. Actuators B 41, 31 (1997).CrossRefGoogle Scholar
11.LeGore, L.J., Greenwood, O.D., Paulus, J.W., Frankel, D.J., and Lad, R.J., J. Vac. Sci. Technol. A 15, 1223 (1997).Google Scholar
12.Moulzolf, S.C., LeGore, L.J., and Lad, R.J., Thin Solid Films 400, 56 (2001).CrossRefGoogle Scholar
13.Moulzolf, S.C., Ding, S.A., and Lad, R.J., Sens. Actuators B 77, 375 (2001).CrossRefGoogle Scholar
14.Deb, S., Philos. Mag. 27, 801(1973).CrossRefGoogle Scholar
15.Lin, H., Hsu, C., Yang, H., Lee, P., and Yang, C., Sens. Actuators B 22, 63 (1994).CrossRefGoogle Scholar
16.Ando, M., Suto, S., Suzuki, T., Tsuchida, T., Nakayama, C., Miura, N., and Yamazoe, N., J. Ceram. Soc. Jap. 104, 1112 (1996).Google Scholar
17.Stumborg, M.F., Santiago, F., Chu, T.K., and Boulais, K.A., J. Vac. Sci. Techol. A 15, 2473 (1997).CrossRefGoogle Scholar
18.Chu, T.K., Santiago, F., Stumborg, M., and Huber, C.A., in Gas-Phase and Surface Chemistry in Electronic Materials Processing, edited by Mantziaris, T.J., Paz-Pujalt, G.R., Smith, F.T.J., and Westmorel, P.R. and (Mat. Res. Soc. Symp. Proc. 334, Pittsburgh, PA, 1994), pp. 501506.Google Scholar
19.Olmstead, M.A., Thin Films: Heteroepitaxial Systems, edited by Liu, W.K. and Santos, M.B. (World Scientific, Singapore, 1999), Vol. 15.Google Scholar
20.Lu, H.C., Fetterman, H.R., Chen, C.J., Hsu, C., and Chen, T.M., Solid-State Electron. 36, 533 (1993).Google Scholar
21.Ito, A., Tsuji, K., Hosomi, T., Maki, T., and Kobayashi, T., Jpn. J. Appl. Phys. 39, 4755 (2000).CrossRefGoogle Scholar
22.Moulzolf, S.C., Frankel, D.J., and Lad, R.J., Review of Scientific Instruments 73, 2325 (2002).Google Scholar
23.Wyckoff, R.W.G., Crystal Structures (Wiley, New York, 1964), Vol. 1.Google Scholar
24.JCPDS 04-0452, 43-1035, 46-0646, Diffraction Tables, International Center for Diffraction Data, Newton Square, PA, 1997.Google Scholar
25.Rieck, G.D., Tungsten and Its Compounds (Pergamon Press, New York, 1967).Google Scholar
26.Rao, C.N.R. and Raveau, B., Transition Metal Oxides (VCH, New York, 1995).Google Scholar
27.Lassner, E. and Schubert, W., Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic/Plenum Publishers, New York, 1999).Google Scholar
28.Kerkhof, F.P.J., Moulijn, J.A., and Heeres, A., J. Electron Spectrosc. Relat. Phenom. 14, 453 (1978).Google Scholar
29.Gassman, P.G., Macomber, D.W., and Willging, S.M., J. Am. Chem. Soc. 107, 2380 (1985).Google Scholar
30.Ohring, M., The Materials Science of Thin Films (Academic Press, London, U.K., 2002).Google Scholar
31.Chambers, S.A., Surf. Sci. Report 39, 105 (2000).CrossRefGoogle Scholar
32.Kim, Y.J., Gao, Y., and Chambers, S.A., Surf. Sci. 371, 358 (1997).Google Scholar
33.Barin, I., Thermochemical Data of Pure Substances, 2nd ed. (VCH, New York, 1993).Google Scholar
34.Chase, M.W., NIST-JANAF Thermochemical Tables (ACS-AIP, New York, 1998).Google Scholar