Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T00:28:40.383Z Has data issue: false hasContentIssue false

Heteroepitaxial growth of DYBa2Cu3O7−x/Dy2O3 multilayers analyzed by TEM

Published online by Cambridge University Press:  29 June 2016

Y.J. Zhang
Affiliation:
Center for the Science and Application of Superconductivity, University of Minnesota, Minneapolis, Minnesota 55455
K.M. Beauchamp
Affiliation:
Center for the Science and Application of Superconductivity, University of Minnesota, Minneapolis, Minnesota 55455
B.R. Johnson
Affiliation:
Center for the Science and Application of Superconductivity, University of Minnesota, Minneapolis, Minnesota 55455
T. Wang
Affiliation:
Center for the Science and Application of Superconductivity, University of Minnesota, Minneapolis, Minnesota 55455
A.M. Goldman
Affiliation:
Center for the Science and Application of Superconductivity, University of Minnesota, Minneapolis, Minnesota 55455
M. L. Mecartney
Affiliation:
Center for the Science and Application of Superconductivity, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

Layered structures of DyBa2Cu3O7−x and Dy2O3 grown on (100) and (110) oriented SrTiO3 have been examined in cross section by transmission electron microscopy and energy dispersive spectroscopy to determine the feasibility of fabricating tunnel junctions with these materials. DyBa2Cu3O7−x and Dy2O3 exhibit a clear epitaxial relationship, resulting in heteroepitaxial growth of DyBa2Cu3O7−x on Dy2O3. The interfaces between DyBa2Cu3O7−x and Dy2O3 are structurally sharp, but interdiffusion between the chemical constituents occurs. Nevertheless, these results are a strong indication that high quality high-Tc superconductor tunneling junctions can be fabricated in this system.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rogers, C.T., Inam, A., Hegde, M.S., Dutta, B., Wu, X.D., and Venkatesan, T., Appl. Phys. Lett. 55, 2032 (1989).CrossRefGoogle Scholar
2.Kingston, J.J., Wellstood, F.C., Lerch, P., Miklich, A.H., and Clark, J., Appl. Phys. Lett. 56, 189 (1990).Google Scholar
3.Gross, R., Guptal, A., Olsson, E., Segmuller, A., and Koren, G., Appl. Phys. Lett. 57, 20 (1990).Google Scholar
4.Hirata, K., Yamamoto, K., Iijima, K., Takada, J., Terashima, T., Bando, Y., and Mazaki, H., Appl. Phys. Lett. 56, 683 (1990).Google Scholar
5.Johnson, B.R., Beauchamp, K.M., Wang, T., Liu, J-X., McGreer, K.A., Wan, J-C., Tuominen, M., Zhang, Y-J., Mecartney, M.L., and Goldman, A.M., Appl. Phys. Lett. 56, 1911 (1990).CrossRefGoogle Scholar
6.Beauchamp, K.M., Zhang, Y-J., Johnson, B.R., Schultz, R.K., Spalding, G.C., Tsen, M., Wang, T., Evans, J.F., Mecartney, M.L., and Goldman, A.M., IEEE Trans. MAG-27, 3090 (1991).Google Scholar
7.Bravman, J. and Sinclair, R., J. Electron Microsc. Technique 1, 53 (1984).Google Scholar
8.Nieh, C.W., Anthony, L., Josefowicz, J.Y., and Krajenbrink, F.G., Appl. Phys. Lett. 56, 2138 (1990).CrossRefGoogle Scholar
9.Tornita, M., Hayashi, T., Takaoka, H., Ishii, Y., Enomoto, Y., and Murakami, T., Jpn. J. Appl. Phys. 27, L636 (1988).Google Scholar
10.Terashima, T., Bando, Y., Iijima, K., Yamamoto, K., and Hirata, K., Appl. Phys. Lett. 53 (1988).Google Scholar