Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T15:14:57.322Z Has data issue: false hasContentIssue false

Heat conduction in silicon thin films: Effect of microstructure

Published online by Cambridge University Press:  03 March 2011

Lanhua Wei*
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Mark Vaudin
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Cheol Song Hwang*
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Grady White
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Jason Xu
Affiliation:
Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221
Andrew J. Steckl
Affiliation:
Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221
*
a)Guest Scientist, on leave from Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201.
b)Guest Scientist, on leave from Department of Inorganic Materials Engineering, Seoul National University, Seoul, Korea.
Get access

Abstract

A study was made of the thermal properties of low pressure chemical vapor deposition (LPCVD) silicon thin films with amorphous and polycrystalline microstructures, produced by varying the substrate temperature. Thermal diffusivity measurements were conducted using a thermal wave technique. The thermal diffusivity of the polycrystalline films was found to be about three times that of the amorphous films, but about one eighth that of bulk silicon single crystals. There was also an indication that the diffusivity increased with deposition temperature above the transition temperature from the amorphous to the polycrystalline state. The relationships between the thermal properties and microstructural features, such as grain size and grain boundary, are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Amorphous and Microcrystalline Semiconductor Devices, Vol. II: Materials and Device Physics, edited by Kanicki, J. (Artech House, Boston/London, 1992).Google Scholar
2Polysilicon Thin Films and Interfaces, edited by Kamins, T., Raicu, B., and Thompson, C. V. (Mater. Res. Soc. Symp. Proc. 182, Pittsburgh, PA, 1990).Google Scholar
3Mastrangelo, C. H. and Muller, R. S., Solid-State Sensor and Actuator Workshop, IEEE Catalog No. 88TH0215-4, Hilton Head,SC, June 6–9, 1988, p. 43.Google Scholar
4Proceedings of the U.S.-Australia Joint Seminar on Enhanced Thermal Conductance in Microelectronics, edited by Filk, M.I., Goodson, K. E., and Williams, A.Melbourne, Australia (1992), p. 79.Google Scholar
5Thornton, J. A., J. Vac. Sci. Technol. 11, 666 (1974).CrossRefGoogle Scholar
6Messier, R., J. Vac. Sci. Technol. A 4, 490 (1986).CrossRefGoogle Scholar
7Lambropoulous, J. C., Jacobs, S. D., Burns, S. J., Shaw-Klein, L., and Hwang, S-S., in Thin-Film Heat Transfer–Properties and Processing, edited by Alam, M. K.et al. (ASME, New York, 1991), Series HTD, Vol. 184, p. 21.Google Scholar
8Graebner, J. E., Diamond Films Technol. 3, (2), 77 (1993).Google Scholar
9Nath, P. and Chopra, K. L., Thin Solid Films 18, 29 (1973).CrossRefGoogle Scholar
10Powell, R. W., J. Sci. Instrum. 34, 485 (1957).CrossRefGoogle Scholar
11Roger, J. R., Lepoutre, F., Fournier, D., and Boccara, A. C., Thin Solid Films 155, 165 (1973).CrossRefGoogle Scholar
12Skumanich, A., Dersch, H., Fathallah, M., and Amer, N. M., Appl. Phys. A 43, 297 (1987).CrossRefGoogle Scholar
13Paddok, C. A. and Eesley, G. L., Appl. Phys. 60, 285 (1986).CrossRefGoogle Scholar
14Wu, Z. L., Kuo, P. K., Wei, L., Gu, S. L., and Thomas, R. L., Thin Solid Films 236, 191 (1993).CrossRefGoogle Scholar
15Boccara, A. C., Fournier, D., and Badoz, J., Appl. Phys. Lett. 36, 130 (1980).CrossRefGoogle Scholar
16Favro, L. D., Kuo, P. K., and Thomas, R. L., in Photoacoustic and Thermal Wave Phenomena in Semiconductors, edited by Mandelis, A. (Elsevier, New York, 1987).Google Scholar
17Steckl, A. J., Xu, J., and Mogul, H. C., in Silicon-Based Optoelectronic Materials, edited by Tischler, M.A., Collins, R. T., Thewalt, M. L. W., and Abstreiter, G. (Mater. Res. Soc. Symp. Proc. 298, Pittsburgh, PA, 1993), p. 211.Google Scholar
18Anthony, T. R., Banholzer, W. F., Fleischer, J. F., Wei, L., Kuo, P. K., Thomas, R. L., and Pryor, R. W., Phys. Rev. B 42, 1104 (1990).CrossRefGoogle Scholar
19Reyes, C. B., Jaarinen, J., Favro, L. D., Kuo, P. K., and Thomas, R. L., in Review of Progress in Quantitative Nondestructive Evaluation, edited by Thompson, D. O. and Chimenti, D. E. (Plenum, New York, 1987), Vol. 6, p. 271.CrossRefGoogle Scholar
20Wei, L., Ph. D. Dissertation, Wayne State University, Detroit, MI (1992).Google Scholar
21CRC Handbook of Chemistry and Physics, 6th ed., edited by Weast, R. C. (Chemical Rubber Co., Cleveland, OH, 1986).Google Scholar
22Cullity, B. D., Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1967).Google Scholar
23Handbook of Semiconductor Silicon Technology, edited by O'Mara, W. C.et al. (Noyes Publications, Park Ridge, NJ, 1990), p. 666.Google Scholar
24Lambropoulos, J. C., Jolly, N. R., Amsden, C. A., Gilman, S. E., Sinicropi, M. J., Diakomihalis, D., and Jacobs, S.D., J. Appl Phys. 66(9), 4230 (1989).CrossRefGoogle Scholar
25Kittel, C., Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, Inc., New York, 1988).Google Scholar
26Kuo, B. S. W., Li, J. C. M., and Schmid, A. W., Appl. Phys. A 55, 289 (1992).CrossRefGoogle Scholar
27Kasmerski, L. L., in Polysilicon Films and Interfaces, edited by Wong, C.Y., Thompson, C. V., and Tu, K.N. (Mater. Res. Soc. Symp. Proc. 106, Pittsburgh, PA, 1988), p. 199.Google Scholar
28Hetherington, A. V., Wort, C. J. H., and Southworth, P., J. Mater. Res. 5, 1591 (1990).CrossRefGoogle Scholar
29Batstone, J. L., Philos. Mag. A 67(1), 51 (1993).CrossRefGoogle Scholar
30Klemens, P. G., Thermochemica Acta 218, 247 (1993).CrossRefGoogle Scholar
31Collins, A. K., Pickring, M. A., and Taylor, R. L., J. Appl. Phys. 68(12), 6510 (1990).CrossRefGoogle Scholar
32Watanabe, H., Sakai, A., Tatsumi, T., and Niino, T., Solid State Technol. 29 (July, 1992).Google Scholar
33Stauffer, D. and Aharmony, A., Introduction to Percolation Theory (Taylor & Francis, London/Washington, DC, 1992).Google Scholar
34Volklein, F. and Baltes, H., J. Microelectromechanical Systems 1(4), 193 (1992).CrossRefGoogle Scholar
35Bean, K. E., Hentzschel, H. P., and Colman, D., J. Appl. Phys. 40, 2358 (1969).CrossRefGoogle Scholar