Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T04:54:30.108Z Has data issue: false hasContentIssue false

Hardness of ion-implanted Ni3Al and TiAl

Published online by Cambridge University Press:  31 January 2011

Gary S. Was
Affiliation:
Institut für Schicht-und Ionentechnik, Kernforschungsanlage Jülich GmbH, D-5170, Jülich, Germany
Get access

Abstract

Experiments were conducted to determine the effect of various implanted species on the hardness of single crystal Ni3Al (Ta, Al, B) and polycrystalline TiAl (Ta, N, B). Implantations were conducted to yield about 7 at. % Ta under the peak and ∼30% Al, N, or B under the peak in the respective targets. Hardness was measured using the Nanoindenter. Results showed that Ta+-implanted Ni3Al softens due to disordering, and subsequent heat treating results in strengthening due to preferential occupation of Al lattice sites. However, B+ and Al+ implantations result in increases in the hardness, while heat treating returns the surface hardness to bulk values. Ta+, N+, and B+ implantations into TiAl all result in hardening with N+ implantation producing the greatest hardening by a factor of ∼1.9. The probable mechanism is solid solution strengthening.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Curwick, L. R., Ph. D. Dissertation, The University of Minnesota (1972).Google Scholar
2. Rawlings, R. D. and Staton-Bevan, A., J. Mater. Sci. 10, 505 (1975).CrossRefGoogle Scholar
3. Aoki, K. and Izumi, O., Phys. Status Solidi (a) 38, 587 (1976).CrossRefGoogle Scholar
4. Wee, D. M. and Suzuki, T., Trans. Jpn. Inst. Met. 20, 634 (1979).CrossRefGoogle Scholar
5. Wee, D. V., Noguchi, O., Oya, Y., and Suzuki, T., Trans. Jpn. Inst. Met. 21, 237 (1980).CrossRefGoogle Scholar
6. Pope, D. S. and Ezz, S. S., Int. Metals Rev. 29, 136 (1984).Google Scholar
7Lopez, J. A. and Hancock, G. F., Phys. Status Solidi (a) 2, 469 (1970).CrossRefGoogle Scholar
8. Khadkikar, P. S., Vedula, K., and Shabel, B. S., Metall. Trans.. 18A, 425 (1987).CrossRefGoogle Scholar
9. Taub, A. I., Huang, S. C., and Chang, K. M., Metall. Trans. 15A, 399 (1984).CrossRefGoogle Scholar
10. Huang, S. C., Taub, A. I., and Chang, K. M., Acta Metall. 32, 1703 (1984).CrossRefGoogle Scholar
11. Kim, Y-W., J. Metals 41, 24 (1989).Google Scholar
12. Saito, K. and Matsushima, T., Mater. Sci. Eng. A115, 355 (1989).CrossRefGoogle Scholar
13. Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
14. Was, G. S., Mantl, S., and Oliver, W., J. Mater. Res. 6, 1200 (1991).CrossRefGoogle Scholar
15. Was, G. S., J. Mater. Res. 5, 1668 (1990).CrossRefGoogle Scholar
16. Cordts, B., Ahmed, M., and Potter, D.I., Nucl. Instrum. Methods 209/210, 873 (1983).CrossRefGoogle Scholar
17. Ahmed, M. and Potter, D. I., Acta Metall. 35, 2341 (1987).CrossRefGoogle Scholar
18. Eridon, J., Was, G.S., and Rehn, L., J. Mater. Res. 3, 626 (1988).CrossRefGoogle Scholar
19. Hartley, N. E. W., J. Vac. Sci. Technol. 12, 485 (1975).CrossRefGoogle Scholar