Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T15:13:44.758Z Has data issue: false hasContentIssue false

Growth structure of yttria-stabilized-zirconia films during off-normal ion-beam-assisted deposition

Published online by Cambridge University Press:  31 January 2011

Y. Iijima*
Affiliation:
Materials Research Lab., Fujikura Ltd., 1–5-1, Kiba, Koto-ku, Tokyo 135, Japan
M. Hosaka
Affiliation:
Materials Research Lab., Fujikura Ltd., 1–5-1, Kiba, Koto-ku, Tokyo 135, Japan
N. Tanabe
Affiliation:
Materials Research Lab., Fujikura Ltd., 1–5-1, Kiba, Koto-ku, Tokyo 135, Japan
N. Sadakata
Affiliation:
Materials Research Lab., Fujikura Ltd., 1–5-1, Kiba, Koto-ku, Tokyo 135, Japan
T. Saitoh
Affiliation:
Materials Research Lab., Fujikura Ltd., 1–5-1, Kiba, Koto-ku, Tokyo 135, Japan
O. Kohno
Affiliation:
Materials Research Lab., Fujikura Ltd., 1–5-1, Kiba, Koto-ku, Tokyo 135, Japan
K. Takeda
Affiliation:
Super-GM, 5–14–10, Nishitenma, Osaka 530, Japan
*
a)Address correspondence to this author.[email protected]
Get access

Abstract

Biaxially aligned YSZ thin films with strong [100] fiber texture were formed on a polycrystalline Ni-based alloy by off-normal ion-beam-assisted deposition. Growth structures were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), etc., and the alignment mechanism was discussed using a selective growth model. Peculiar structural evolution of the crystalline orientation was observed and its development was well described by an exponential equation. It was explained as a collaboration of an anisotropic growth condition and epitaxial crystallization. The [100] fiber texture was formed by columnar structures of diameter of 30–100 nm, which were composed of 5–10 nm diameter crystallites. Very smooth surfaces were observed by AFM imaging with a roughness of 2–3 nm and a peculiar ripple structure. The origin of the azimuthal alignment was discussed with emphasis on the surface structure of YSZ films produced using ion-beam-assisted deposition (IBAD) and the etching rate measurements of (100) surfaces of YSZ single crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Givargizov, E. I., Oriented Crystallization on Amorphous Substrates (Plenum, New York, 1991).CrossRefGoogle Scholar
2.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
3.Cuomo, J. J., Rossnagel, S. M., and Kaufman, H. R., Handbook of Ion Beam Processing Technology (Noyes Publications, Park Ridge, NJ, 1989), p. 170.Google Scholar
4.Yu, L. S., Harper, J. M. E., Cuomo, J. J., and Smith, D. A., Appl. Phys. Lett. 47, 932 (1985).CrossRefGoogle Scholar
5.Yu, L. S., Harper, J. M. E., Cuomo, J. J., and Smith, D. A., J. Vac. Sci. Technol. A 4, 443 (1986).CrossRefGoogle Scholar
6.Bradley, R. M., Harper, J. M. E., and Smith, D. A., J. Appl. Phys. 60, 4160 (1986).CrossRefGoogle Scholar
7.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
8.Iijima, Y., Tanabe, N., and Kohno, O., Advances in Superconductivity, Vol. 4, edited by Hayakawa, H. and Koshizuka, Y. (Springer, Tokyo, 1992), p. 517.Google Scholar
9.Iijima, Y., Onabe, K., Futaki, N, Tanabe, N., Sadakata, N., Kohno, O., and Ikeno, Y., IEEE Trans. Appl. Supercond. 3, 1510 (1993).Google Scholar
10.Iijima, Y., Onabe, K., Futaki, N, Tanabe, N., Sadakata, N., Kohno, O., and Ikeno, Y., J. Appl. Phys. 74, 1905 (1993).Google Scholar
11.Reade, R. P., Berdahl, P., Russo, R. E., and Garrison, S. M., Appl. Phys. Lett. 61, 2231 (1992).CrossRefGoogle Scholar
12.Sonnenberg, N., Longo, A. S., Cima, M. J., Chang, B. P., Ressler, K. G., McIntyre, P. C., and Liu, Y. P., J. Appl. Phys. 74, 1027 (1993).CrossRefGoogle Scholar
13.Zhu, S., Lowndes, D. H., Budai, J. D., and Norton, D. P., Appl. Phys. Lett. 65, 2012 (1994).Google Scholar
14.Wu, X. D., Foltyn, S. R., Arendt, P. N., Blumenthal, W. R., Campbell, I. H., Cotton, J. D., Coulter, J. Y., Hults, W. L., Maley, M. P., Safar, H. F., and Smith, J. L., Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
15.Chen, K. Y., Salamo, G. J., Afonso, S., Xu, X. L., Tang, Y. G., Xiong, Q., Chan, F. T., and Schaper, L. W., Physica C, 267, 355 (1996).CrossRefGoogle Scholar
16.Mullar, K. H., in Ref. 5, p. 241.Google Scholar
17.Bradley, R. M. and Harper, J. M. E., J. Vac. Sci. Technol. A 6, 2390 (1988).Google Scholar
18.Park, S. I., Marshall, A., Hammond, R. H., Geballe, T. H., and Talvacchio, J., J. Mater. Res. 2, 446 (1987).Google Scholar
19.Iijima, Y., Hosaka, M., Tanabe, N, Sadakata, N., Saitoh, T., Kohno, O., and Takeda, K., J. Mater. Res. 12, 2913 (1997).Google Scholar
20.Huang, T. C., Lim, G., Parmigiani, F., and Key, E., J. Vac. Sci. Technol. A 3, 2161 (1985).CrossRefGoogle Scholar
21.Ensinger, W., Nucl. Instrum. Methods in Phys. Res. B 106, 142 (1995).Google Scholar
22.Roosendaal, H. E., in Topics in Applied Physics, edited by Behrisch, R. (Springer, Berlin, 1981), p. 219.Google Scholar
23.Lindhard, J., Nielsen, V., and Scharff, M., K. Dan. Vidensk. Selek. Mat.-Fyz. Medd. 34 (10) (1968).Google Scholar
24.Ressler, K. G., Sonnenberg, N., and Cima, M. J., J. Am. Ceram. Soc. 80 (10), 2637 (1997).CrossRefGoogle Scholar