Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T12:00:17.839Z Has data issue: false hasContentIssue false

Growth rate, surface morphology, and defect microstructures of β–SiC films chemically vapor deposited on 6H–SiC substrates

Published online by Cambridge University Press:  31 January 2011

H. S. Kong
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
J. T. Glass
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Get access

Abstract

Beta–SiC thin films have been epitaxially grown on 6H–SiC {0001} substrates via chemical vapor deposition (CVD). The growth rate increased linearly with the source/carrier gas flow rate ratio. The activation energy for the growth of β–SiC grown on the Si face of the 6H–SiC substrate was 12 Kcal/mole. These observations are consistent with a surface reaction-controlled process. The as-grown surface morphology is dependent on the terminal layer of the substrate, the growth temperature, and the source/carrier gas flow rate ratio. The C face of a 6H–SiC {0001} substrate caused a higher growth rate and thus poorer surface morphology than the Si face under the same growth conditions. The optimum temperature range for growth of a flat, mirror-like β–SiC surface was determined to be 1773–1823 K in the present CVD system. The microstructure and nucleation of double positioning boundaries were investigated via transmission and scanning electron microscopies. Triangular defects and their modifications were also observed, and their origins have been discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Skace, R.I. and Slac, G.A., in Silicon Carbide, A High Temperature Semiconductor, edited by O'Connor, J.R. and Smiltens, J. (Pergamon, New York, 1960), p. 24.Google Scholar
2Bergemeister, E. A., Muench, W. Von, and Pettenpaul, E., J. Appl. Phys. 50, 5790 (1974).CrossRefGoogle Scholar
3Philipp, H. P. and Taft, E. A., in Silicon Carbide, A High Temperature Semiconductor, edited by O‘Connor, J. R. and Smiltens, J. (Pergamon, New York, 1960), p. 371.Google Scholar
4Muench, W. von and Pfaffender, I., J. Appl. Phys. 48, 4831 (1977).CrossRefGoogle Scholar
5Muench, W. von and Pettenpaul, E., J. Appl. Phys. 48, 4823 (1977).CrossRefGoogle Scholar
6Das, P. and Ferry, D.K., Solid-State Electronics 19, 851 (1976).CrossRefGoogle Scholar
7Nishino, S., Powell, J. A., and Will, H.A., Appl. Phys. Lett. 42, 460 (1983).CrossRefGoogle Scholar
8Addamiano, A. and Sprague, J. A., Appl. Phys. Lett. 44, 525 (1984) and private communications.CrossRefGoogle Scholar
9Liaw, P. and Davis, R. F., J. Electrochem. Soc. 132, 642 (1985).CrossRefGoogle Scholar
10Sasaki, K., Sakuma, E., Misana, S., Yoshida, S., and Gonda, S., Appl. Phys. Lett. 45, 72 (1984).CrossRefGoogle Scholar
11Yoshida, S., Daimon, H., Yamanaka, M., Sakuma, E., Misana, S., and Endo, K., J. Appl. Phys. 60, 2984 (1986).Google Scholar
12Kelner, G., Binari, S., Sieger, K., and Kong, H., “Novel Refractory Semiconductors,” in Materials Research Society Symposium Proceedings, edited by Aselage, T., Emin, D., and Wood, C. (Materials Research Society, Pittsburgh, PA, 1987), Vol. 97, p. 227.Google Scholar
13Kong, H.S., Palmour, J.W., Glass, J.T., and Davis, R.F., Appl. Phys. Lett. 51, 442 (1987).CrossRefGoogle Scholar
14Edmond, J. A., Das, K., and Davis, R. F., J. Appl. Phys. 63, 922 (1988).CrossRefGoogle Scholar
15Palmour, J.W., Kong, H. S., and Davis, R. F., Appl. Phys. Lett. 51, 2030 (1987).CrossRefGoogle Scholar
16Carter, C. H., Davis, R. F., and Nutt, S. R., J. Mater. Res. 1, 811 (1986).CrossRefGoogle Scholar
17Wessels, B., Gatos, H.C., and Witt, A. F., in Silicon Carbide–1973, edited by Marshall, R. C., Faust, J. W. Jr, and Ryan, C. E. (University of South Carolina, Columbia, SC, 1974), p. 25.Google Scholar
18Nishino, S., Matsunami, H., and Tanaka, T., J. Cryst. Growth 45, 144 (1978).CrossRefGoogle Scholar
19Muench, W. von and Phaffeneder, I., Thin Solid Films 31, 39 (1976).CrossRefGoogle Scholar
20Powell, J. A. and Will, H. A., J. Appl. Phys. 44, 177 (1976).Google Scholar
21Rai-Choudhury, P. and Formigoni, N. P., J. Electrochem. Soc. 116, 1440 (1969).CrossRefGoogle Scholar
22Berman, I., Ryan, C. E., Marshall, R. C., and Littler, J. R., “The Influence of Annealing on Thin Films of Beta SiC,” AFCRL-72-0737, 1972.Google Scholar
23Bartlett, R. W. and Muenller, R. A., Mater. Res. Bull. 4, S341 (1969).Google Scholar
24Jennings, V. J., Sommer, A., and Chang, H.C., J. Electrochem. Soc. 113, 728 (1966).CrossRefGoogle Scholar
25Kong, H. S., Glass, J.T., and Davis, R. F., Appl. Phys. Lett. 49, 1074 (1986).CrossRefGoogle Scholar
26Kong, H.S., Jiang, B.L., Glass, J.T., Rozgonnyi, G.A., and More, K. L., J. Appl. Phys. 63, 2645 (1988).CrossRefGoogle Scholar
27Palmour, J.W., Kong, U.S., and Davis, R. F., Appl. Phys. Lett. 51, 2028 (1987).CrossRefGoogle Scholar
28Watts, B.E., Thin Solid Films 18, 1 (1973).CrossRefGoogle Scholar
29Faktor, M.M. and Garrett, I., Growth of Crystals From the Vapour (Chapman and Hall, London, 1974).Google Scholar
30Brekel, C.H. J. van der, Philips Res. Repts. 32, 118133 (1977).Google Scholar
31Spear, Karl E., Pure and Appl. Chem. 54, 12971311 (1982).CrossRefGoogle Scholar
32Jones, M. E. and Shaw, D. W., in Treatise on Solid State Chemistry, edited by Hannay, N.B. (Plenum Press, New York, 1975), Vol. 5, pp. 283295.Google Scholar
33Booker, G. R. and Stickler, R., J. Appl. Phys. 33, 3281 (1962).CrossRefGoogle Scholar
34Stowell, M.J., in Epitaxial Growth, part B, edited by Matthews, J.W. (Academic Press, Inc., New York, 1975), p. 465.Google Scholar