Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T22:14:44.618Z Has data issue: false hasContentIssue false

The growth of zinc phthalocyanine thin films by pulsed laser deposition

Published online by Cambridge University Press:  28 December 2015

Michal Novotný*
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 182 21 Prague, Czech Republic
Jakub Šebera
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 182 21 Prague, Czech Republic
Amina Bensalah-Ledoux
Affiliation:
Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
Stephan Guy
Affiliation:
Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
Jiří Bulíř
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 182 21 Prague, Czech Republic
Přemysl Fitl
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 182 21 Prague, Czech Republic; and Department of Physics, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic
Jan Vlček
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 182 21 Prague, Czech Republic; and Department of Physics, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic
Dominika Zákutná
Affiliation:
Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague, Czech Republic
Eva Marešová
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 182 21 Prague, Czech Republic; and Department of Physics, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic
Pavel Hubík
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 182 21 Prague, Czech Republic
Irena Kratochvílová
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 182 21 Prague, Czech Republic
Martin Vrňata
Affiliation:
University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic
Ján Lančok
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 182 21 Prague, Czech Republic
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Zinc phthalocyanine (ZnPc) thin films were prepared by pulsed laser deposition (PLD) using KrF laser (λ = 248 nm, τ = 5 ns). The effect of laser fluence (in the region from 10 to 100 mJ/cm2) and repetition rate of 50 and 200 Hz to the film growth and its properties was investigated. The growth of ZnPc thin film was in situ monitored using transmission measurement in ultraviolet-visible spectral range. The optical properties in conjunction with density functional theory/time-dependent density functional theory calculations suggested the growth of the film in β-phase. X-ray diffraction also revealed crystalline character of the film. The electrical properties analyzed by van der Pauw method exhibited resistivity ρ ≈ 108–1010 Ω cm. Fourier transform infrared spectroscopy analyses revealed low deterioration of PLD deposited ZnPc films. We demonstrate that, by finely tuning the deposition conditions, PLD is a successful technique for fabrication of ZnPc thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Senthilarasu, S., Velumani, S., Sathyamoorthy, R., Subbarayan, A., Ascencio, J.A., Canizal, G., Sebastian, P.J., Chavez, J.A., and Perez, R.: Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications. Appl. Phys. A 77(3–4), 383 (2003).CrossRefGoogle Scholar
Karousis, N., Ortiz, J., Ohkubo, K., Hasobe, T., Fukuzumi, S., Sastre-Santos, A., and Tagmatarchis, N.: Zinc phthalocyanine-graphene hybrid material for energy conversion: Synthesis, characterization, photophysics, and photoelectrochemical cell preparation. J. Phys. Chem. C 116(38), 20564 (2012).CrossRefGoogle Scholar
Pfeiffer, M., Leo, K., Zhou, X., Huang, J.S., Hofmann, M., Werner, A., and Blochwitz-Nimoth, J.: Doped organic semiconductors: Physics and application in light emitting diodes. Org. Electron. 4(2–3), 89 (2003).Google Scholar
Fabris, C., Valduga, G., Miotto, G., Borsetto, L., Jori, G., Garbisa, S., and Reddi, E.: Photosensitization with zinc (II) phthalocyanine as a switch in the decision between apoptosis and necrosis. Cancer Res. 61(20), 7495 (2001).Google Scholar
Santhi, A., Namboodiri, V.V., Radhakrishnan, P., and Nampoori, V.P.N.: Spectral dependence of third order nonlinear optical susceptibility of zinc phthalocyanine. J. Appl. Phys. 100(5), 053109 (2006).Google Scholar
de la Escosura, A., Martinez-Diaz, M.V., Barbera, J., and Torres, T.: Self-organization of phthalocyanine-[60]fullerene dyads in liquid crystals. J. Org. Chem. 73(4), 1475 (2008).CrossRefGoogle Scholar
Acikbas, Y., Evyapan, M., Ceyhan, T., Capan, R., and Bekaroglu, O.: Characterisation of Langmuir–Blodgett films of new multinuclear copper and zinc phthalocyanines and their sensing properties to volatile organic vapours. Sens. Actuators, B 123(2), 1017 (2007).CrossRefGoogle Scholar
Gan, F.X.: Some considerations of organic materials for high density optical disk data storage. Chin. Sci. Bull. 45(6), 572 (2000).Google Scholar
Nahlik, J., Kasparkova, I., and Fitl, P.: Methodology of evaluating the influence of the resistance of contact regions in the measurements of sheet resistance on stripes of ultrathin high-resistance materials. Rev. Sci. Instrum. 83(7), 074701 (2012).Google Scholar
Kadish, K.M., Smith, K.M., and Guilard, R.U.: The Porphyrin Handbook: Phthalocyanines: Properties and Materials (San Diego: Academic Press, 2003).Google Scholar
Maggioni, G., Manera, M., Spadavecchia, J., Tonezzer, M., Carturan, S., Quaranta, A., Dejulianfernandez, C., Rella, R., Siciliano, P., and Dellamea, G.: Optical response of plasma-deposited zinc phthalocyanine films to volatile organic compounds. Sens. Actuators, B 127(1), 150 (2007).CrossRefGoogle Scholar
Stanculescu, A., Socol, M., Socol, G., Mihailescu, I.N., Girtan, M., and Stanculescu, F.: Maple prepared organic heterostructures for photovoltaic applications. Appl. Phys. A 104(3), 921 (2011).Google Scholar
Stanculescu, A., Socol, M., Rasoga, O., Mihailescu, I.N., Socol, G., Preda, N., Breazu, C., and Stanculescu, F.: Laser prepared organic heterostuctures on glass/AZO substrates. Appl. Surf. Sci. 302, 169 (2014).CrossRefGoogle Scholar
Fitl, P., Vrnata, M., Kopecky, D., Vlcek, J., Skodova, J., Bulir, J., Novotny, M., and Pokorny, P.: Laser deposition of sulfonated phthalocyanines for gas sensors. Appl. Surf. Sci. 302, 37 (2014).Google Scholar
Ghani, F., Kristen, J., and Riegler, H.: Solubility properties of unsubstituted metal phthalocyanines in different types of solvents. J. Chem. Eng. Data 57(2), 439 (2012).Google Scholar
Novotny, M., Bulir, J., Bensalah-Ledoux, A., Guy, S., Fitl, P., Vrnata, M., Lancok, J., and Moine, B.: Optical properties of zinc phthalocyanine thin films prepared by pulsed laser deposition. Appl. Phys. A 117(1), 377 (2014).CrossRefGoogle Scholar
Matsumoto, N., Shima, H., Fujii, T., and Kannari, F.: Organic electroluminescence cells based on thin films deposited by ultraviolet laser ablation. Appl. Phys. Lett. 71(17), 2469 (1997).CrossRefGoogle Scholar
Ina, E., Matsumoto, N., Shikada, E., and Kannari, F.: Laser ablation deposition of crystalline copper-phthalocyanine thin films. Appl. Surf. Sci. 127, 574 (1998).Google Scholar
Nishio, S., Mase, R., Oba, T., Matsuzaki, A., and Sato, H.: Preparation of amorphous organic semiconductor thin films with polyperinaphthalene structure on temperature-controlled substrates by excimer laser ablation of 3,4,9,10-perylenetetracarboxylic dianhydride. Appl. Surf. Sci. 127, 589 (1998).Google Scholar
Hong, C., Chae, H.B., Lee, K.H., Ahn, S.K., Kim, C.K., Kim, T.W., Cho, N.I., and Kim, S.O.: The possibility of pulsed laser deposited organic thin films for light-emitting diodes. Thin Solid Films 409(1), 37 (2002).Google Scholar
Wang, L.D. and Kwok, H.S.: Pulsed laser deposition of organic thin films. Thin Solid Films 363(1–2), 58 (2000).CrossRefGoogle Scholar
Kajitani, T., Tanaka, O., Tange, Y., Matsuda, H., Ooie, T., Yano, T., Yoneda, M., Katsumura, M., and Suzaki, Y.: Chemical structure change of thin films prepared from nonpolymeric organic compounds by pulsed laser deposition. J. Vac. Sci. Technol., A 18(5), 2359 (2000).CrossRefGoogle Scholar
Guy, S., Guy, L., Bensalah-Ledoux, A., Pereira, A., Grenard, V., Cosso, O., and Vautey, T.: Pure chiral organic thin films with high isotropic optical activity synthesized by UV pulsed laser deposition. J. Mater. Chem. 19(38), 7093 (2009).CrossRefGoogle Scholar
Blanchet, G.B., Fincher, C.R., and Malajovich, I.: Laser evaporation and the production of pentacene films. J. Appl. Phys. 94(9), 6181 (2003).Google Scholar
Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, T., and Hirao, K.: A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 120(18), 8425 (2004).CrossRefGoogle ScholarPubMed
Kratochvilova, I., Nespurek, S., Sebera, J., Zalis, S., Pavelka, M., Wang, G., and Sworakowski, J.: New organic FET-like photoactive device, experiments and DFT modeling. Eur. Phys. J. E 25(3), 299 (2008).Google Scholar
Sebera, J., Nespurek, S., Kratochvilova, I., Zalis, S., Chaidogiannos, G., and Glezos, N.: Charge carrier mobility in sulphonated and non-sulphonated Ni phthalocyanines: Experiment and quantum chemical calculations. Eur. Phys. J. B 72(3), 385 (2009).Google Scholar
Guy, S., Bensalah-Ledoux, A., Lambert, A., Guillin, Y., Guy, L., and Mulatier, J.C.: Chiral organic thin films: How far pulsed laser deposition can conserve chirality. Thin Solid Films 520(20), 6440 (2012).Google Scholar
Scheidt, W.R. and Dow, W.: Molecular stereochemistry of phthalocyanatozinc(II). J. Am. Chem. Soc. 99(4), 1101 (1977).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996).Google Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976).Google Scholar
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J.: Gaussian 09 (Wallingford, CT: Gaussian Inc., 2009).Google Scholar
Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648 (1993).Google Scholar
Adamo, C. and Barone, V.: Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110(13), 6158 (1999).Google Scholar
Yanai, T., Tew, D.P., and Handy, N.C.: A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393(1–3), 51 (2004).Google Scholar
Iikura, H., Tsuneda, T., Yanai, T., and Hirao, K.: A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys. 115(8), 3540 (2001).Google Scholar
Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098 (1988).Google Scholar
Lee, C., Yang, W., and Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988).Google Scholar
Miehlich, B., Savin, A., Stoll, H., and Preuss, H.: Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 157(3), 200 (1989).CrossRefGoogle Scholar
Rassolov, V.A., Pople, J.A., Ratner, M.A., and Windus, T.L.: 6-31G∗ basis set for atoms K through Zn. J. Chem. Phys. 109(4), 1223 (1998).Google Scholar
Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007 (1989).Google Scholar
Kendall, R.A., Dunning, T.H., and Harrison, R.J.: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96(9), 6796 (1992).Google Scholar
Woon, D.E. and Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98(2), 1358 (1993).Google Scholar
O'Boyle, N.M., Tenderholt, A.L., and Langner, K.M.: cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 29(5), 839 (2008).Google Scholar
Senthilarasu, S., Sathyamoorthy, R., and Kulkarni, S.K.: Substrate temperature effects on structural orientations and optical properties of ZincPthalocyanine (ZnPc) thin films. Mater. Sci. Eng., B 122(2), 100 (2005).Google Scholar
Henriksson, A. and Sundbom, M.: Semiempirical molecular orbital studies of phthalocyanines. I. The electronic structure and excited states of phthalocyanine, H2Pc. Theor. Chim. Acta 27(3), 213 (1972).CrossRefGoogle Scholar
Edwards, L. and Gouterma, M.: Porphyrins XV. Vapor absorption spectra and stability: Phthalocyanines. J. Mol. Spectrosc. 33(2), 292 (1970).CrossRefGoogle Scholar
El-Nahass, M.M., Zeyada, H.M., Aziz, M.S., and El-Ghamaz, N.A.: Structural and optical properties of thermally evaporated zinc phthalocyanine thin films. Opt. Mater. 27(3), 491 (2004).Google Scholar
Louis, J.S., Lehmann, D., Friedrich, M., and Zahn, D.R.T.: Study of dependence of molecular orientation and optical properties of zinc phthalocyanine grown under two different pressure conditions. J. Appl. Phys. 101(1), 031503 (2007).Google Scholar
Barrett, M.A., Borkowska, Z., Humphreys, M.W., and Parsons, R.: Ellipsometry of thin-films of copper phthalocyanine. Thin Solid Films 28(2), 289 (1975).Google Scholar
Debe, M.K.: Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. Copper phthalocyanine. J. Vac. Sci. Technol., A 10(4), 2816 (1992).Google Scholar
Liu, Z.T., Kwok, H.S., and Djurisic, A.B.: The optical functions of metal phthalocyanines. J. Phys. D: Appl. Phys. 37(5), 678 (2004).Google Scholar
Lucia, E.A. and Verderame, F.D.: Spectra of polycrystalline phthalocyanines in visible region. J. Chem. Phys. 48(6), 2674 (1968).Google Scholar
Wojdyła, M., Derkowska, B., Łukasiak, Z., and Bała, W.: Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation. Mater. Lett. 60(29–30), 3441 (2006).Google Scholar
Chowdhury, A., Biswas, B., Majumder, M., Sanyal, M.K., and Mallik, B.: Studies on phase transformation and molecular orientation in nanostructured zinc phthalocyanine thin films annealed at different temperatures. Thin Solid Films 520(21), 6695 (2012).Google Scholar
Senthilarasu, S., Hahn, Y.B., and Lee, S-H.: Nano structure formation in vacuum evaporated zinc phthalocyanine (ZnPc) thin films. J. Mater. Sci.: Mater. Electron. 19(5), 482 (2007).Google Scholar
Cai, Z-L., Crossley, M.J., Reimers, J.R., Kobayashi, R., and Amos, R.D.: Density functional theory for charge transfer: The nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J. Phys. Chem. B 110(31), 15624 (2006).Google Scholar
Saini, G.S., Singh, S., Kaur, S., Kumar, R., Sathe, V., and Tripathi, S.K.: Zinc phthalocyanine thin film and chemical analyte interaction studies by density functional theory and vibrational techniques. J. Phys.: Condens. Matter 21(22), 225006 (2009).Google ScholarPubMed
Bala, W., Wojdyla, M., Rebarz, M., Szybowic, M., Drozdowski, M., Grodzicki, A., and Piszczek, P.: Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra. J. Optoelectron. Adv. Mater. 11(3), 264 (2009).Google Scholar
Farag, A.A.M.: Optical absorption studies of copper phthalocyanine thin films. Opt. Laser Technol. 39(4), 728 (2007).Google Scholar
Maggioni, G., Quaranta, A., Carturan, S., Patelli, A., Tonezzer, M., Ceccato, R., and Della Mea, G.: Deposition of copper phthalocyanine films by glow-discharge-induced sublimation. Chem. Mater. 17(7), 1895 (2005).CrossRefGoogle Scholar
Schunemann, C., Elschner, C., Levin, A.A., Levichkova, M., Leo, K., and Riede, M.: Zinc phthalocyanine—Influence of substrate temperature, film thickness, and kind of substrate on the morphology. Thin Solid Films 519(11), 3939 (2011).Google Scholar
Senthilarasu, S., Hahn, Y.B., and Lee, S-H.: Structural analysis of zinc phthalocyanine (ZnPc) thin films: X-ray diffraction study. J. Appl. Phys. 102(4), 043512 (2007).Google Scholar
Supplementary material: File

Novotný supplementary material

Table S1

Download Novotný supplementary material(File)
File 17.6 KB