Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T00:28:58.410Z Has data issue: false hasContentIssue false

Growth of TiO2 nanotube arrays in semiconductor porous anodic alumina templates

Published online by Cambridge University Press:  29 October 2014

A. Shoja
Affiliation:
Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441, Iran
A. Nourmohammadi*
Affiliation:
Department of Nanotechnology, Faculty of Advanced Science and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
M.H. Feiz
Affiliation:
Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441, Iran
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The aim of this research study is to produce high-quality TiO2 nanotube arrays using porous alumina templates. The templates are fabricated through anodizing bulk aluminum foils which can be utilized for the production of thick alumina templates. To produce the nanotube arrays, the alumina template pores are filled with the precursor sol by applying a DC electric field. Then, the deposited nanotubes are heat treated at 320 °C for 2 h and, subsequently, sintered for 2 h at 400 and 750 °C to obtain nanotubes with pure anatase and rutile phases, respectively, as confirmed by x-ray diffraction data. Scanning and transmission electron microscopy (SEM and TEM) investigations show that the nanotubes have been deposited in the channels of the nanoporous alumina template. Also, SEM investigations show the existence of a vast area of TiO2 nanotube arrays when we use semiconductor alumina templates.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, J.H., Kim, S., and Bard, A.J.: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 (2006).Google Scholar
Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 (2006).Google Scholar
Zhang, M., Bando, Y., and Wada, K.: Sol-gel template preparation of TiO2 nanotubes and nanorods. J. Mater. Sci. Lett. 20, 167 (2001).Google Scholar
Roy, P., Berger, S., and Schmuki, P.: TiO2 nanotubes: Synthesis and applications. Angew. Chem., Int. Ed. 50, 2904 (2011).Google Scholar
Li, S. and Zhang, G.: One-step realization of open-ended TiO2 nanotube arrays by transition of the anodizing voltage. J. Ceram. Soc. Jpn. 118, 291 (2010).Google Scholar
Sreekantan, S., Saharudin, K.A., Lockman, Z., and Tzu, T.W.: Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. Nanotechnology 21, 365603 (2010).Google Scholar
Moon, S., Kim, B., Yang, C., and Jeong, Y.: Effect of bath type on the formation of TiO2 nanotubes in fluoride containing aqueous solution. J. Nanosci. Nanotech. 12, 1230 (2012).CrossRefGoogle ScholarPubMed
Wang, W., Varghese, O.K., Paulose, M., Grimes, C.A., Wang, Q., and Dickey, E.C.: A study on the growth and structure of titania nanotubes. J. Mater. Res. 19, 417 (2004).CrossRefGoogle Scholar
Kang, T-S., Smith, A.P., Taylor, B.E., and Durstock, M.F.: Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett. 9, 601 (2009).Google Scholar
Ren, X., Gershon, T., Iza, D., Munoz-Rojas, D., Musselman, K., and MacManus-Driscoll, J.: The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol–gel electrophoresis. Nanotechnology 20, 365604 (2009).CrossRefGoogle ScholarPubMed
Gong, D., Grimes, C., Varghese, O.K., Hu, W., Singh, R., Chen, Z., and Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).Google Scholar
Rani, S., Roy, S.C., Paulose, M., Varghese, O.K., Mor, G.K., Kim, S., Yoriya, S., LaTempa, T.J., and Grimes, C.: Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 12, 2780 (2010).Google Scholar
Răileanu, M., Crişan, M., Drăgan, N., Crişan, D., Galtayries, A., Brăileanu, A., Ianculescu, A., Teodorescu, V.S., Niţoi, I., and Anastasescu, M.: Sol–gel doped TiO2 nanomaterials: A comparative study. J. Sol-gel. Sci. Technol. 51, 315 (2009).Google Scholar
Aal, A.A., Mahmoud, S.A., and Aboul-Gheit, A.K.: Sol–gel and thermally evaporated nanostructured thin ZnO films for photocatalytic degradation of trichlorophenol. Nanoscale Res. Lett. 4, 627 (2009).Google ScholarPubMed
Grimes, C.A. and Mor, G.K.: TiO2 Nanotube Arrays: Synthesis, Properties, and Applications (Springer Science+Business Media, 2009).Google Scholar
Limmer, S.J., Chou, T.P., and Cao, G.Z.: A study on the growth of TiO2 nanorods using sol electrophoresis. J. Mater. Sci. 39(3), 895 (2004).Google Scholar
Li, A., Muller, F., Birner, A., Nielsch, K., and Gosele, U.: Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023 (1998).Google Scholar
Ono, S., Saito, M., Ishiguro, M., and Asoh, H.: Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 151, B473 (2004).CrossRefGoogle Scholar
Anderson, C. and Bard, A.J.: An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J. Phys. Chem. 99, 9882 (1995).Google Scholar
Nourmohammadi, A., Bahrevar, M.A., Schulze, S., and Hietschold, M.: Electrodeposition of lead zirconate titanate nanotubes. J. Mater. Sci. 43(14), 4753 (2008).Google Scholar
Afanas' ev, V., Houssa, M., Stesmans, A., Merckling, C., Schram, T., and Kittl, J.: Influence of Al2O3 crystallization on band offsets at interfaces with Si and TiNx. Appl. Phys. Lett. 99(7), 072103 (2011).Google Scholar
Fernandes, J., Picciochi, R., Da Cunha Belo, M., Moura e Silva, T., Ferreira, M., and Fonseca, I.: Capacitance and photoelectrochemical studies for the assessment of anodic oxide films on aluminium. Electrochim. Acta 49(26), 4701 (2004).Google Scholar
Natishan, P. and O’Grady, W.: Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: A review. J. Electrochem. Soc. 161(9), C421 (2014).Google Scholar
Nourmohammadi, A., Asadabadi, S.J., Yousefi, M.H., and Ghasemzadeh, M.: Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid. Nanoscale Res. Lett. 7(1), 1 (2012).CrossRefGoogle ScholarPubMed
Hung, C., Chiang, P., Yuan, C., and Chou, C.: Photocatalytic degradation of azo dye in TiO2 suspended solution. Water Sci. Technol. 43, 313 (2001).Google Scholar
Vinodgopal, K., Bedja, I., and Kamat, P.V.: Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chem. Mater. 8, 2180 (1996).Google Scholar
Liu, G., Wu, T., Zhao, J., Hidaka, H., and Serpone, N.: Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions. Environ. Sci. Technol. 33, 2081 (1999).CrossRefGoogle Scholar
Li, W., Shah, S.I., Sung, M., and Huang, C-P.: Structure and size distribution of TiO2 nanoparticles deposited on stainless steel mesh. J. Vac. Sci. Technol., B 20, 2303 (2002).Google Scholar
Kiyoung, L.: Anodic Growth of Porous Metal Oxides and their Applications (Technische Fakultät, 2013), p. 144.Google Scholar
Bhattacharya, P., Mahajan, S., and Kamimura, H.: Comprehensive Semiconductor Science and Technology: Online Version (Newnes, 2011).Google Scholar
Nourmohammadi, A., Bahrevar, M., and Hietschold, M.: Template-based electrophoretic deposition of perovskite PZT nanotubes. J. Alloys Compd. 473(1), 467 (2009).Google Scholar
Lanki, M., Nourmohammadi, A., and Feiz, M.: Electrophoretic growth of PbTiO3 nanotubes. Ferroelectrics 448(1), 134 (2013).Google Scholar