Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T12:03:39.276Z Has data issue: false hasContentIssue false

Growth of superconducting and non-superconducting whiskers in the Bi-Sr-Ca-Cu-O (BSCCO) system

Published online by Cambridge University Press:  01 December 2005

P. Badica*
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-ku, Sendai, 980-8577 Japan; and National Institute of Materials Physics, Bucharest-Magurele, 077125, POB MG-7, Romania
K. Togano
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-ku, Sendai, 980-8577 Japan; and National Institute for Materials Science, Tsukuba, 305-0047 Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Growth of such non-superconducting whiskers [Sr2.24Ca0.4Al2Ox, (Ca0.8–0.85Sr0.15–0.1)2CuO3,CuO, or Bi2.44Sr2Ca1.3–2Cu6.9–9.95Al0.35–0.46Ox (Cu-rich whiskers)] formed during the growth of Bi-2212 superconducting whiskers from powder or glassy substrates, is discussed. These whiskers are likely to grow from the bottom end, and there is a tight relationship with the growth of the Bi-2212 whiskers. A general reaction-path model for the whisker growth in the BSCCO system, independent of the type of the catalytic impurity and substrate, is proposed. When whiskers are grown under magnetic fields, up to 10 T, changes in the whisker size, aspect ratio, and morphology are observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Matsubara, I., Ogura, T., Tanigawa, H., Yamashita, H., Kinoshita, M. and Kawai, T.: Growth of Bi-Sr-Ca-Cu-O based superconducting whiskers. J. Cryst. Growth 110, 973 (1991).CrossRefGoogle Scholar
2.Uemoto, H., Mizutani, M., Kishida, S. and Yamashita, T.: Growth mechanism of Bi-based superconducting whiskers. Physica C 392, 512 (2003).CrossRefGoogle Scholar
3.Yamada, M., Hosi, N. and Kambe, S.: Addition of Ag, Pb, K, or Li to Bi2Sr2CaCu2Oy whisker. Physica C 378–381, 152 (2002).CrossRefGoogle Scholar
4.Kishida, S. and Uemoto, H.: Characterization of Bi-based whiskers by the method of Al2O3-seeded glassy quenched platelets. Int. J. Mod. Phys. B 16, 4497 (2002).CrossRefGoogle Scholar
5.Matsubara, I., Kageyama, H., Tanigawa, H., Ogura, T., Yamashita, H. and Kawai, T.: Preparation of fibrous Bi(Pb)-Sr-Ca-Cu-O crystals and their superconducting properties in a bending state. Jpn. J. Appl. Phys. 28, L1121 (1989).CrossRefGoogle Scholar
6.Badica, P., Togano, K. and Kumakura, H.: A modified airtight two-crucible method for growth of Bi-2212 whiskers from glassy pellets. Supercond. Sci. Technol. 17, 891 (2004).CrossRefGoogle Scholar
7.Badica, P., Togano, K., Awaji, S., Watanabe, K., Iyo, A. and Kumakura, H.: Application of elevated magnetic fields during growth of BiSrCaCuO superconducting whiskers and studies of growth defects for better understanding of the growth mechanism. J. Cryst. Growth 269, 518 (2004).CrossRefGoogle Scholar
8.Matsubara, I., Funahashi, R., Ogura, T., Yamashita, H., Tsuru, K. and Kawai, T.: Growth mechanism of Bi2Sr2CaCu2Ox superconducting whiskers. J. Cryst. Growth 141, 131 (1994).CrossRefGoogle Scholar
9.Murphy, C.J.: Nanocubes and nanoboxes. Science 298, 2139 (2002).CrossRefGoogle ScholarPubMed
10.Wang, D., Mo, M., Yu, D., Xu, L., Li, F. and Qian, Y.: Large-scale growth and shape evolution of Cu2O cubes. Cryst. Growth Des. 3, 717 (2003).CrossRefGoogle Scholar
11.Grivel, J.-C. and Flükiger, R.: A study of the stability of the (Bi,Pb)2Sr2Ca2Cu3Ox phase in Ag-sheathed tapes. Physica C 235–240, 505 (1994).CrossRefGoogle Scholar
12.Kazin, P.E., Poltavetz, V.V., Tretyakov, Y.D., Jansen, M., Freitag, B. and Mader, W.: Study on the superconducting composite material formation in the system Bi2Sr2CaCu2O8+x/Al-containing phases. Physica C 280, 253 (1997).CrossRefGoogle Scholar
13.Hellstrom, E.E.: Phase relations and alignment in Bi-based high-Tc wires. JOM 44, 48 (1992).CrossRefGoogle Scholar
14.Polonka, J., Xu, M., Li, Q., Goldman, A.I. and Finnemore, D.K.: In-situ x-ray investigation of the melting of Bi-Sr-Ca-Cu-O phases. Appl. Phys. Lett. 59, 3640 (1991).CrossRefGoogle Scholar
15.Kazin, P.E., Poltavetz, V.V., Poltavetz, O.N., Kovalevsky, A.A., Tretyakov, Y.D. and Jansen, M.: Formation of Bi-2212 phase and phase assemblage in Ga-doped BSCCO system. Physica C 324, 30 (1999).CrossRefGoogle Scholar
16.Dimesso, L., Matsubara, I., Ogura, T., Funahashi, R., Yamashita, H. and Tampieri, A.: Effect of the Ga-doping on the growth and superconducting properties of the Bi2Sr2CaCu2Oy whiskers. Physica C 235–240, 473 (1994).CrossRefGoogle Scholar
17.Nagao, M., Sato, M. and Maeda, H.: Growth and superconducting properties of Bi2Sr2CaCu2O8+δ single crystal whiskers using tellurium-doped precursors. Appl. Phys. Lett. 79, 2612 (2001).CrossRefGoogle Scholar
18.Nagao, M., Sato, M., Tachiki, Y., Miyagawa, K., Tanaka, M., Maeda, H., Yun, K.S., Takano, Y. and Hatano, T.: Growth of R-123 phase single crystal whiskers. Jpn. J. Appl. Phys. 43, L324 (2004).CrossRefGoogle Scholar
19.Kasuga, T. and Abe, Y.: Phase separation and crystallization of BiSrCaCu2Al0.5Ox glass. J. Am. Ceram. Soc. 76, 1885 (1993).CrossRefGoogle Scholar
20.Zheng, X.G., Suzuki, M. and Xu, C.N.: A new approach to single crystal growth of CuO. Mater. Res. Bull. 33, 605 (1998).CrossRefGoogle Scholar
21.Sata, T., Sakai, K. and Tashiro, S.: Vapor pressures of bismuth, lead, and copper components in Bi2Sr1.7CaCu2Oy and Bi1.7Pb0.3Sr1.7Ca2Cu3Oy superconductor ceramics. J. Am. Ceram. Soc. 75, 805 (1992).CrossRefGoogle Scholar
22.Räth, S., Woodall, L., Deroche, C., Seipel, B., Schwaigerer, F. and Schmahl, W.W.: Quantitative phase analysis of PBSCCO 2223 precursor powders—an XRD/Rietveld refinement study. Supercond. Sci. Technol. 15, 543 (2002).CrossRefGoogle Scholar