Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T06:10:08.307Z Has data issue: false hasContentIssue false

Growth of SiC whiskers by VLS process

Published online by Cambridge University Press:  03 March 2011

G. Urretavizcaya
Affiliation:
Instituto de Investigationes en Ciencia y Tecnología de Materiales (INTEMA), (CONICET-Universidad Nacional de Mar del Plata), Av. J.B. Justo 4302-(7600) Mar del Plata, Argentina
Porto J.M. López
Affiliation:
Instituto de Investigationes en Ciencia y Tecnología de Materiales (INTEMA), (CONICET-Universidad Nacional de Mar del Plata), Av. J.B. Justo 4302-(7600) Mar del Plata, Argentina
Get access

Abstract

β-SiC whiskers were synthesized by the vapor-liquid-solid (VLS) process using Fe catalyst. Whiskers show smooth surfaces and no ramifications. They have uniform diameter (0.5-1 μm) and lengths between 50 and 300 μm. A catalyst droplet was observed on the tip of almost all the whiskers. The transport of iron from the substrate surface to the SiO generators, where growth took place, occurs fundamentally via vapor phase. Fe was deposited over surfaces containing C, and whisker growth was produced where there were Fe droplets of appropriate size and SiO available in great quantity. The need for reaching a threshold size (2–3 μm) of the catalyst droplet before whisker growth is proposed as a possible explanation for the formation of whiskers with uniform size in zones with a high partial pressure of SiO.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lee, J. G. and Cutler, I. B., Ceram. Bull. 54, 195 (1975).Google Scholar
2Bootsma, G. A., Knippenberg, W. F., and Verspui, G., J. Cryst. Growth 11, 297 (1971).CrossRefGoogle Scholar
3Milewski, J. V., Gac, F. D., Petrovic, J. J., and Skaggs, S. R., J. Mater. Sci. 20, 1160 (1985).CrossRefGoogle Scholar
4Chrysanthou, A., Grieveson, P., and Jha, A., J. Mater. Sci. 26, 3463 (1991).CrossRefGoogle Scholar
5McMahon, G., Carpenter, G. J. C., and Malis, T. F., J. Mater. Sci. 26, 5655 (1991).CrossRefGoogle Scholar
6Wang, L., Wada, H., and Allard, L. F., J. Mater. Res. 7, 148 (1992).CrossRefGoogle Scholar
7Saito, M., Nagashima, S., and Kato, A., J. Mater. Sci. Lett. 11, 373 (1992).CrossRefGoogle Scholar
8Radhakrishna Bhat, B. V. and Sanghi, G. P., Bull. Mater. Sci. 9, 295 (1987).Google Scholar
9Sharma, N. K., Williams, W. S., and Zangvil, A., J. Am. Ceram. Soc. 67, 715 (1984).CrossRefGoogle Scholar
10Krstic, V. D., J. Am. Ceram. Soc. 75, 170 (1992).CrossRefGoogle Scholar
11Comprehensive Inorg. Chem., edited by Bailar, J. C. Jr., Emeleus, H. J., Nyholm, R., and Trotman-Dickenson, A. F. (Pergamon Press, Oxford, 1973), p. 989.Google Scholar
12Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, New York, 1986), p. 292.Google Scholar
13Muan, A. and Osborn, E. F., Phase Equilibria among Oxides in Steelmaking (Addison-Wesley Publishing Company, Inc., Reading, MA, 1965), p. 15.Google Scholar