Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T14:18:17.889Z Has data issue: false hasContentIssue false

Growth of rare-earth niobate-based pyrochlores on textured Ni–W substrates with ionic radii dependency

Published online by Cambridge University Press:  01 April 2005

M.S. Bhuiyan*
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6100; and University of Houston, Houston, Texas 77204
M. Paranthaman
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6100
S. Sathyamurthy
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6100
A. Goyal
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6100
K. Salama
Affiliation:
University of Houston, Houston, Texas 77204
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Epitaxial films of rare-earth (RE) niobates, RE3NbO7 with pyrochlore structures, were grown on biaxially textured nickel–3 at.% tungsten (Ni–W) substrates using a chemical solution deposition process. A precursor solution of 0.3–0.50 M concentration of total cations was spin coated on to short samples of Ni–W substrates, and the films were crystallized at 1050–1100 °C in a gas mixture of Ar–4% H2 for 15 min. Detailed studies revealed that RE-niobates with ionic radius ratio RRE/RNb (R = ionic radius) from 1.23 to 1.40 (i.e., Sm, Eu, Gd, Ho, Y, and Yb) grow epitaxially with the pyrochlore structure. X-ray studies showed that the films of pyrochlore RE niobate films were highly textured with cube-on-cube epitaxy. Scanning electron and atomic force microscopy investigations of RE3NbO7 films revealed a fairly dense and smooth microstructure without cracks and porosity. The rare-earth niobate layers may be potentially used as buffer layers for YBa2Cu3O7−δ coated conductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

References

REFERENCES

1. Sathyamurthy, S., Paranthaman, M., Zhai, H.Y., Kang, S., Aytug, T., Cantoni, C., Leonard, K.J., Payzant, E.A., Christen, H.M., Goyal, A., Li, X., Schoop, U., Kodenkandath, T. and Rupich, M.W.: Chemical solution deposition of lanthanum zirconate barrier layers applied to low-cost coated-conductor fabrication. J. Mater. Res. 19, 2117 (2004).CrossRefGoogle Scholar
2. Subramanian, M.A., Aravamudan, G. and Rao, G.V. Subba: Oxide pyrochlores—A review. Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
3. Cann, D.P., Randall, C.A. and Shrout, T.R.: Investigation of the dielectric properties of bismuth pyrochlores. Solid State Commun. 100, 529 (1996).CrossRefGoogle Scholar
4. Valant, M. and Davies, P.K.: Crystal chemistry and dielectric properties of chemically substituted (Bi1.5Zn1.0Nb1.5)O7 and Bi2(Zn2/3Nb4/3)O7 pyrochlores. J. Am. Ceram. Soc. 83, 147 (2000).CrossRefGoogle Scholar
5. Goodenough, J.B. and Castellano, R.N.: Defect pyrochlores as catalyst supports. J. Solid State Chem. 44, 108 (1982).CrossRefGoogle Scholar
6. Korf, S.J., Koopmans, H.J.A., Lippens, B.C., Burggraaf, A.J. and Gellings, P.J.: Electrical and catalytic properties of some oxides with the fluorite or pyrochlore structure. CO oxidation on some compounds derived from Gd2Zr2O7 . J. Chem. Soc., Faraday Trans. 1 83, 1485 (1987).CrossRefGoogle Scholar
7. Tuller, H.L.: Mixed ionic-electronic conduction in a number of fluorite and pyrochlore compounds. Solid State Ionics 52, 135 (1992).CrossRefGoogle Scholar
8. Kramer, S., Spears, M. and Tuller, H.L.: Conduction in titanate pyrochlores: Role of dopants. Solid State Ionics 72, 59 (1994).CrossRefGoogle Scholar
9. Heremans, C., Wuensch, B.J., Stalick, J.K. and Prince, E.: Fast-ion conducting Y2(Zr y Ti1− y )2O7 pyrochlores: Neutron Rietveld analysis of disorder induced by Zr substitution. J. Solid State Chem. 117, 108 (1995).CrossRefGoogle Scholar
10. Maloney, M.J.: Thermal Barrier Coating Systems and Materials. U.S. Patent No. 6 117 560 (2000).Google Scholar
11. Maloney, M.J.: Thermal Barrier Coating Systems and Materials. U.S. Patent No. 6, 177 200 B1 (2001).Google Scholar
12. Weber, W.J., Ewing, R.C., Catlow, C.R.A., de Rubia, T. Diaz la, Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R. and Zinkle, S.J.: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13, 1434 (1998).CrossRefGoogle Scholar
13. Ewing, R.C., Lutze, W. and Weber, W.J.: Zircon: A host-phase for the disposal of weapons plutonium. J. Mater. Res. 10, 243 (1995).CrossRefGoogle Scholar
14. Ewing, R.C., Weber, W.J., Clinard, F.W. Jr.: Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energy 29, 63 (1995).CrossRefGoogle Scholar
15. Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J. and Hartmann, T.: Radiation tolerance of complex oxides. Science 289, 748 (2000).CrossRefGoogle ScholarPubMed
16. Helean, K.B., Ushakov, S.V., Brown, C.E., Navrotsky, A., Lian, J., Ewing, R.C., Farmer, J.M. and Boatner, L.A.: Formation enthalpies of rare earth titanate pyrochlores. J. Solid State Chem. 177, 1858 (2004).CrossRefGoogle Scholar
17. Yonezawa, S., Muraoka, Y., Matsushita, Y. and Hiroi, Z.: Superconductivity in a pyrochlore-related oxide KOs2O6 . J. Phys. Condens. Matter 16, L9 (2004).CrossRefGoogle Scholar
18. McHale, A.E. and Roth, R.S.: Phase Equilibria Diagrams, Volume XII, Oxides (American Ceramic Society, Westerville, OH, 1996), p. 113.Google Scholar
19. Paranthaman, M., Chirayil, T.G., List, F., Cui, X., Goyal, A., Lee, D.F., Specht, E.D., Martin, P.M., Williams, R.K., Kroeger, D.M., Morrel, J.S., Beach, D.B., Feenstra, R. and Christen, D.K.: Fabrication of long lengths of epitaxial buffer layers on biaxially textured nickel substrates using a continuous reel-to-reel dip-coating unit. J. Am. Ceram. Soc. 84, 273 (2001).CrossRefGoogle Scholar
20. Aytug, T., Paranthaman, M., Kang, B.W., Beach, D.B., Sathyamurthy, S., Specht, E.D., Lee, D.F., Feenstra, R., Goyal, A., Kroeger, D.M., Leonard, K.J., Martin, P.M. and Christen, D.K.: Reel-to-reel continuous chemical solution deposition of epitaxial Gd2O3 buffer layers on biaxially textured metal tapes for the fabrication of YBa2Cu3O7-coated conductors. J. Am. Ceram. Soc. 86, 257 (2003).CrossRefGoogle Scholar
21. Bhuiyan, M.S., Paranthaman, M., Sathyamurthy, S., Aytug, T., Kang, S., Lee, D.F., Goyal, A., Payzant, E.A. and Salama, K.: MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni–W substrates for YBCO coated conductors. Supercond. Sci. Technol. 16, 1305 (2003).CrossRefGoogle Scholar
22. Bhuiyan, M.S., Paranthaman, M., Sathyamurthy, S., Aytug, T., Kang, S., Lee, D.F., Goyal, A., Payzant, E.A. and Salama, K.: Growth of epitaxial Y2O3 film on biaxially textured Ni–W substrates, in Frontiers in Superconducting Materials—New Materials and Applications, edited by Matias, V., Talvacchio, J., Xi, X., Han, Z., and Neumuller, H-W, (Mater. Res. Soc. Symp. Proc. EXS-3, Warrendale, PA, 2004), p. 57.Google Scholar
23. Sathyamurthy, S., Paranthaman, M., Aytug, T., Kang, B.W., Martin, P.M., Goyal, A., Kroeger, D.M. and Christen, D.K.: Chemical solution deposition of lanthanum zirconate buffer layers on biaxially textured Ni–1.7% Fe–3% W alloy substrates for coated-conductor fabrication. J. Mater. Res. 17, 1543 (2002).CrossRefGoogle Scholar
24. Paranthaman, M., Bhuiyan, M.S., Sathyamurthy, S., Zhai, H.Y., Goyal, A. and Salama, K.: Epitaxial growth of solution based rare earth niobate, RE3NbO7 films on biaxially textured Ni–W substrates. J. Mater. Res. 20, 6 (2005).CrossRefGoogle Scholar
25. Bhuiyan, M.S., Paranthaman, M., Beach, D., Heatherly, L., Goyal, A., Payzant, E.A. and Salama, K.: Epitaxial growth of Eu3NbO7 buffer layers on biaxially textured Ni–W substrates. Ceramic Trans. 160, 35 (2004).Google Scholar
26. Dawley, J.T., Ong, R.J. and Clem, P.G.: Chemical solution deposition of (100)-oriented SrTiO3 buffer layers on Ni substrates. J. Mater. Res. 17, 1678 (2002).CrossRefGoogle Scholar
27. Gmelin, L.: Gmelin Handbook of Inorganic Chemistry, 8th ed. (Springer-Verlag, Berlin, Germany, 1984), p. 34.Google Scholar