Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T05:49:30.512Z Has data issue: false hasContentIssue false

Growth of multiwall carbon nanocoils using Fe catalyst films prepared by ion sputtering

Published online by Cambridge University Press:  01 May 2013

Dawei Li
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Ganjingzi District, Dalian 116024, People’s Republic of China
Lujun Pan*
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Ganjingzi District, Dalian 116024, People’s Republic of China
Kun Liu
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Ganjingzi District, Dalian 116024, People’s Republic of China
Wei Peng
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Ganjingzi District, Dalian 116024, People’s Republic of China
Rashad Muhammad
Affiliation:
College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing, 400044, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Carbon nanocoils (CNCs) with different diameters have been synthesized on different substrates by thermal chemical vapor deposition using Fe films as catalysts prepared by ion sputtering. It is found that CNCs with diameters greater than 100 nm are obtained as the main products in large quantities on Fe film coated indium tin oxide substrates. However, on Fe film coated SiO2 substrates, multiwall CNCs (MWCNCs) along with carbon nanotubes (CNTs) are grown, and the yield of MWCNCs is decreased rapidly with a lower Fe film thickness. The as-grown MWCNCs with observed coil diameters less than 100 nm and filament diameters less than 30 nm are much thinner than the conventional CNCs. Plate-like catalyst particles with sizes much larger than the filament diameter of the MWCNCs are observed at the roots of these MWCNCs, indicating a base growth mechanism. Furthermore, it is also observed that large particles with irregular shapes lead to the growth of helical MWCNCs, while large particles with steady circular shapes tend to grow as straight CNTs. Based on the experimental results, a growth model for MWCNCs is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cervantes-Sodi, F., Vilatela, J.J., Jimenez-Rodriguez, J.A., Reyes-Gutierrez, L.G., Rosas-Melendez, S., Iniguez-Rabago, A., Ballesteros-Villarreal, M., Palacios, E., Reiband, G., and Terrones, M.: Carbon nanotube bundles self-assembled in double helix microstructures. Carbon 50(10), 3688 (2012).CrossRefGoogle Scholar
Zhao, M.Q., Huang, J.Q., Zhang, Q., Nie, J.Q., and Wei, F.: Stretchable single-walled carbon nanotube double helices derived from molybdenum-containing layered double hydroxides. Carbon 49(6), 2148 (2011).CrossRefGoogle Scholar
Zhang, Q., Zhao, M.Q., Tang, D.M., Li, F., Huang, J.Q., Liu, B., Zhu, W.C., Zhang, Y.H., and Wei, F.: Carbon-nanotube-array double helices. Angew. Chem. Int. Ed. 49(21), 3642 (2010).CrossRefGoogle ScholarPubMed
Lau, K.T., Lu, M., and Hui, D.: Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures. Composites Part B 37(6), 437 (2006).CrossRefGoogle Scholar
Bell, D.J., Dong, L., Nelson, B.J., Golling, M., Zhang, L., and Grutzmacher, D.: Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings. Nano Lett. 6(4), 725 (2006).CrossRefGoogle ScholarPubMed
Gao, P.X., Ding, Y., Mai, W., Hughes, W.L., Lao, C., and Wang, Z.L.: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309(5741), 1700 (2005).CrossRefGoogle ScholarPubMed
Kanada, R., Pan, L., Akita, S., Okazaki, N., Hirahara, K., and Nakayama, Y.: Synthesis of multiwalled carbon nanocoils using codeposited thin film of Fe-Sn as catalyst. Jpn. J. Appl. Phys. 47(4), 1949 (2008).CrossRefGoogle Scholar
Jian, X., Jiang, M., Zhou, Z.W., Zeng, Q., Lu, J., Wang, D.C., Zhu, J.T., Gou, J.H., Wang, Y., Hui, D., and Yang, M.L.: Gas-induced formation of Cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers. ACS Nano 6(10), 8611 (2012).CrossRefGoogle ScholarPubMed
Hayashida, T., Pan, L., and Nakayama, Y.: Mechanical and electrical properties of carbon tubule nanocoils. Physica B 323(1–4), 352 (2002).CrossRefGoogle Scholar
Li, D-W., Pan, L-J., Liu, D-P., and Yu, N-S.: Relationship between geometric structures of catalyst particles and growth of carbon nanocoils. Chem. Vap. Deposition 16(4–6), 166 (2010).CrossRefGoogle Scholar
Chen, X.Q., Zhang, S.L., Dikin, D.A., Ding, W.Q., Ruoff, R.S., Pan, L.J., and Nakayama, Y.: Mechanics of a carbon nanocoil. Nano Lett. 3(9), 1299 (2003).CrossRefGoogle Scholar
Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678 (1996).CrossRefGoogle Scholar
Volodin, A., Buntinx, D., Ahlskog, M., Fonseca, A., Nagy, J.B., and Van Haesendonck, C.: Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett. 4(9), 1775 (2004).CrossRefGoogle Scholar
Li, X.F., Lau, K.T., and Yin, Y.S.: Mechanical properties of epoxy-based composites using coiled carbon nanotubes. Compos. Sci. Technol. 68(14), 2876 (2008).CrossRefGoogle Scholar
Zhao, D.L. and Shen, Z.M.: Preparation and microwave absorption properties of carbon nanocoils. Mater. Lett. 62(21–22), 3704 (2008).CrossRefGoogle Scholar
Li, D.W. and Pan, L.J.: Growth of carbon nanocoils using Fe–Sn–O catalyst film prepared by a spin-coating method. J. Mater. Res. 26(16), 8 (2011).CrossRefGoogle Scholar
Okazaki, N., Hosokawa, S., Goto, T., and Nakayama, Y.: Synthesis of carbon tubule nanocoils using Fe-In-Sn-O fine particles as catalysts. J. Phys. Chem. B 109(37), 17366 (2005).CrossRefGoogle ScholarPubMed
Pan, L.J., Zhang, M., and Nakayama, Y.: Growth mechanism of carbon nanocoils. J. Appl. Phys. 91(12), 10058 (2002).CrossRefGoogle Scholar
Kuzuya, C., In-Hwang, W., Hirako, S., Hishikawa, Y., and Motojima, S.: Preparation, morphology, and growth mechanism of carbon nanocoils. Chem. Vap. Deposition 8(2), 57 (2002).3.0.CO;2-Y>CrossRefGoogle Scholar
Su, C.C. and Chang, S.H.: Radial growth of carbon nanocoils on stainless steel wires coated with tin particles using chemical vapor deposition from acetylene. Mater. Lett. 65(7), 1114 (2011).CrossRefGoogle Scholar
Li, D.W., Pan, L.J., Qian, J.J., and Liu, D.P.: Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol-gel method. Carbon 48(1), 170 (2010).CrossRefGoogle Scholar
Pan, L.J., Hayashida, T., and Nakayama, Y.: Growth and density control of carbon tubule nanocoils using catalyst of iron compounds. J. Mater. Res. 17(1), 145 (2002).CrossRefGoogle Scholar
Liu, J. and Harris, A.T.: Synthesis of coiled carbon nanotubes on Co/Al2O3 catalysts in a fluidised-bed. J. Nanopart. Res. 12(2), 645 (2010).CrossRefGoogle Scholar
Haoqing, H., Zeng, J., Weller, F., and Greiner, A.: Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe(CO)5 as floating catalyst precursor. Chem. Mater. 15(16), 3170 (2003).Google Scholar
Zhang, X.B., Zhang, X.F., Bernaerts, D., Vantendeloo, G.T., Amelinckx, S., Vanlanduyt, J., Ivanov, V., Nagy, J.B., Lambin, P., and Lucas, A.A.: The texture of catalytically grown coil-shaped carbon nanotubes. Europhys. Lett. 27(2), 141 (1994).CrossRefGoogle Scholar
Ivanov, V., Nagy, J.B., Lambin, P., Lucas, A., Zhang, X.B., Zhang, X.F., Bernaerts, D., Vantendeloo, G., Amelinckx, S., and Vanlanduyt, J.: The study of carbon nanotubules produced by catalytic method. Chem. Phys. Lett. 223(4), 329 (1994).CrossRefGoogle Scholar
Amelinckx, S., Zhang, X.B., Bernaerts, D., Zhang, X.F., Ivanov, V., and Nagy, J.B.: A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265(5172), 635 (1994).CrossRefGoogle ScholarPubMed
Lu, M., Lau, K.T., Xu, J.C., and Li, H.L.: Coiled carbon nanotubes growth and DSC study in epoxy-based composites. Colloids Surf., A 257258, 339 (2005).CrossRefGoogle Scholar
Tsuchiya, N. and Ogino, T.: Morphology of carbon nanostructures in alcohol chemical vapor deposition. Jpn. J. Appl. Phys. 46(9A), 6091 (2007).CrossRefGoogle Scholar
Yokota, M., Suda, Y., Takikawa, H., Ue, H., Shimizu, K., and Umeda, Y.: Structural analysis of multi-walled carbon nanocoils synthesized with Fe-Sn catalyst supported on zeolite. J. Nanosci. Nanotechnol. 11(3), 2344 (2011).CrossRefGoogle ScholarPubMed
Chen, X.Q., Yang, S.M., Motojima, S., and Ichihara, M.: Morphology and microstructure of twisting nano-ribbons prepared using sputter-coated Fe-base alloy catalysts on glass substrates. Mater. Lett. 59(7), 854 (2005).CrossRefGoogle Scholar
Wen, Q., Tian, T., Qian, W.Z., Hu, L., Yun, S., Cao, A.Y., and Wei, F.: Synthesis of vertically aligned CNTs with hollow channel on Al2O3-Al substrate electroplated with fe nanoparticles. J. Electrochem. Soc. 155(10), K180 (2008).CrossRefGoogle Scholar
Xiong, G.Y., Wang, D.Z., and Ren, Z.F.: Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44(5), 969 (2006).CrossRefGoogle Scholar
Hofmann, S., Cantoro, M., Kleinsorge, B., Casiraghi, C., Parvez, A., Robertson, J., and Ducati, C.: Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth. J. Appl. Phys. 98(3), 034308 (2005).CrossRefGoogle Scholar
Hart, A.J. and Slocum, A.H.: Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. J. Phys. Chem. B 110(16), 8250 (2006).CrossRefGoogle ScholarPubMed
Zhang, G., Mann, D., Zhang, L., Javey, A., Li, Y., Yenilmez, E., Wang, Q., McVittie, J.P., Nishi, Y., Gibbons, J., and Dai, H.: Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. U.S.A. 102(45), 16141 (2005).CrossRefGoogle ScholarPubMed
Shajahan, M., Mo, Y.H., Kibria, A., Kim, M.J., and Nahm, K.S.: High growth of SWNTs and MWNTs from C2H2 decomposition over Co-Mo/MgO catalysts. Carbon 42(11), 2245 (2004).CrossRefGoogle Scholar
Wei, Y.Y., Eres, G., Merkulov, V.I., and Lowndes, D.H.: Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Appl. Phys. Lett. 78(10), 1394 (2001).CrossRefGoogle Scholar
Maultzsch, J., Reich, S., Thomsen, C., Webster, S., Czerw, R., Carroll, D.L., Vieira, S.M.C., Birkett, P.R., and Rego, C.A.: Raman characterization of boron-doped multiwalled carbon nanotubes. Appl. Phys. Lett. 81(14), 2647 (2002).CrossRefGoogle Scholar
Biro, L.P., Mark, G.I., and Lambin, P.: Regularly coiled carbon nanotubes. IEEE Trans. Nanotechnol. 2(4), 362 (2003).CrossRefGoogle Scholar
Fonseca, A., Hernadi, K., Nagy, J.B., Lambin, P., and Lucas, A.A.: Model structure of perfectly graphitizable coiled carbon nanotubes. Carbon 33(12), 1759 (1995).CrossRefGoogle Scholar
Li, D.W. and Pan, L.J.: Necessity of base fixation for helical growth of carbon nanocoils. J. Mater. Res. 27(2), 431 (2012).CrossRefGoogle Scholar
Qian, J., Pan, L., Li, D., Yu, N., and Liu, D.: Formation of catalyst particles for carbon nanocoil growth. J. Nanosci. Nanotechnol. 10(11), 7366 (2010).CrossRefGoogle ScholarPubMed
Supplementary material: File

Li et al. supplementary material

Supplementary figures

Download Li et al. supplementary material(File)
File 9 MB