Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T01:57:24.675Z Has data issue: false hasContentIssue false

Growth of epitaxial films of sodium potassium tantalate and niobate on single-crystal lanthanum aluminate [100] substrates

Published online by Cambridge University Press:  31 January 2011

George H. Thomas
Affiliation:
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996
Eliot D. Specht
Affiliation:
Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
John Z. Larese
Affiliation:
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996; and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Ziling B. Xue
Affiliation:
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996
David B. Beach*
Affiliation:
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a)Address all correspondence to this author. e-mail: [email protected]; [email protected]
Get access

Abstract

Epitaxial films of sodium potassium tantalate (Na0.5K0.5TaO3, NKT) and sodium potassium niobate (Na0.5K0.5NbO3, NKN) were grown on single-crystal lanthanum aluminate (LAO) (100) (indexed as a pseudo-cubic unit cell) substrates via an all-alkoxide solution (methoxyethoxide complexes in 2-methoxyethanol) deposition route for the first time. X-ray diffraction studies indicated that the onset of crystallization in powders formed from hydrolyzed gel samples was 550 °C. 13C nuclear magnetic resonance studies of solutions of methoxyethoxide complexes indicated that mixed-metal species were formed, consistent with the low crystallization temperatures observed. Thermal gravimetric analysis with simultaneous mass spectrometry showed the facile loss of the ligand (methoxyethoxide) at temperatures below 400 °C. Crystalline films were obtained at temperatures as low as 650 °C when annealed in air. θ-2θ x-ray diffraction patterns revealed that the films possessed c-axis alignment in that only (h00) reflections were observed. Pole-figures about the NKT or NKN (220) reflection indicated a single in-plane, cube-on-cube epitaxy. The quality of the films was estimated via ω (out-of-plane) and φ (in-plane) scans and full-widths at half-maximum (FWHMs) were found to be reasonably narrow (∼1°), considering the lattice mismatch between the films and the substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, X., Helmersson, U., Madsen, L., Ivanov, I., Münger, P., Rudner, S., Hjörvasson, B., Sundgren, J-E.: Composition, structure, and dielectric tunability of epitaxial SrTiO3 thin films grown by radio frequency magnetron sputtering. J. Vac. Sci. Technol., A 17, 564 1999CrossRefGoogle Scholar
2Blomqvist, M., Koh, J-H., Khartsev, S., Grishin, A., Andréasson, J.: High-performance epitaxial Na0.5K0.5NbO3 thin films by magnetron sputtering. Appl. Phys. Lett. 81, 337 2002CrossRefGoogle Scholar
3Blomqvist, M., Khartsev, S., Grishin, A., Petraru, A.: Rf sputtered Na0.5K0.5NbO3 films on oxide substrates as optical waveguiding material. Integr. Ferroelectr. 54, 631 2003Google Scholar
4Khartsev, S.I., Grishin, M.A., Grishin, M.A.: Characterization of heteroepitaxial Na0.5K0.5NbO3/La0.5Sr0.5CoO3 electro-optical cell. Appl. Phys. Lett. 86, 062901 2005CrossRefGoogle Scholar
5Tangwiwat, S., Milne, S.J.: Barium titanate sols prepared by a diol-based sol-gel route. J. Non-Cryst. Solids 351, 976 2005CrossRefGoogle Scholar
6Lange, F.: Chemical solution routes to single-crystal thin films. Science 273, 903 1996CrossRefGoogle ScholarPubMed
7Cho, C-R., Grishin, A.M.: Self-assembling ferroelectric Na0.5K0.5NbO3 thin films by pulsed laser deposition. Appl. Phys. Lett. 75, 268 1999CrossRefGoogle Scholar
8Budd, K.D., Dey, S.K., Payne, D.A. Sol-gel processing of PbTi03–PbZr03 and PLZT thin films.Br. Ceram. Soc. Proc., 36, 107 (1985Google Scholar
9Shoup, S.S., Paranthaman, M., Beach, D.B., Specht, E.D., Williams, R.K.: Sol-gel synthesis of LaAlO3, epitaxial growth of LaAlO3 thin films on SrTiO3 (100). J. Mater. Res. 12, 1017 1997CrossRefGoogle Scholar
10Morrell, J.S., Xue, Z.B., Specht, E.D., Goyal, A., Martin, P.M., Lee, D.F., Feenstra, R., Verebelyi, D.T., Christen, D.K., Chirayil, T.G., Paranthaman, M., Vallet, C.E., Beach, D.B.: Epitaxial growth of gadolinium oxide on roll-textured nickel using a solution growth technique. J. Mater. Res. 15, 621 2000CrossRefGoogle Scholar
11Tanaka, K., Kakimoto, K-I., Ohatso, H.: Fabrication of highly oriented lead-free (Na, K)NbO3 thin films at low temperature by sol-gel process. J. Cryst. Growth 294, 209 2006CrossRefGoogle Scholar
12Sathyamurthy, S., Kim, K., Aytug, T., Paranthaman, M.: Effect of relative humidity on the crystallization of sol-gel lanthanum zirconium oxide films. Chem. Mater. 18, 5829 2006CrossRefGoogle Scholar
13Kato, K., Zheng, C., Finder, J.M., Dey, S.K., Torii, Y.: Sol-gel route to ferroelectric layer-structured perovskite SrBi2Ta2O9 and SrBi2Nb2O9 thin films. J. Am. Ceram. Soc. 81, 1869 1998CrossRefGoogle Scholar
14Thomas, G.H., Morrell, J.S., Aytug, T., Xue, Z.B., Beach, D.B. Epitaxial growth of strontium bismuth tantalate/niobate on buffered magnesium oxide substrates in Ferroelectric Thin Films XIII,edited by R. Ramesh, J.P. Maria, M. Alexe, and V. Joshi (Mater. Res. Soc. Symp. Proc. 902E, Warrendale,PA, 2006), 0902E-T03-46CrossRefGoogle Scholar
15Caruso, R., de Sanctisa, O., Frattinib, A., Sterenc, C., Gilc, R.: Synthesis of precursors for chemical solution deposition of PZT thin films. Surf. Coat. Technol. 122(1), 44 1999CrossRefGoogle Scholar
16Bradley, D.C., Mehrotra, R., Rothwell, I., Singh, A.: Alkoxo and Aryloxo Derivatives of Metals Academic Press San Diego, CA 2001 77Google Scholar
17Kaufherr, N., Eichorst, D.J., Payne, D.A.: X-ray photoelectron spectroscopy studies of alkoxide-derived lithium niobate. J. Vac. Sci. Technol., A 14, 299 1996CrossRefGoogle Scholar