Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:25:52.329Z Has data issue: false hasContentIssue false

Growth of epitaxial β-FeSi2 thin films by pulsed laser deposition on silicon (111)

Published online by Cambridge University Press:  03 March 2011

C.H. Olk
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
O. P. Karpenko
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
S. M. Yalisove
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
G. L. Doll
Affiliation:
Physics Department, North American Operations, Research and Development Center, General Motors Corporation, Warren, Michigan 48090-9055
J.F. Mansfield
Affiliation:
Electron Microbeam Analysis Laboratory, University of Michigan, Ann Arbor, Michigan 48109
Get access

Abstract

Epitaxial films of semiconducting iron disilicide (β-FeSi2) have been grown by pulsed laser deposition. We find that pulsed laser deposition creates conditions favorable to the formation of films with the smallest geometric misfit possessed by this material system. In situ reflection high energy electron diffraction results indicate a layer by layer growth of the silicide. Analysis of transmission electron diffraction data has determined that the films are single phase and that this growth method reproduces the epitaxial relationship: β-FeSi2 (001) ‖ Si(111).

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Derrien, J., Chevrier, J., Le Thanh, V., Berbezier, J., Giannini, C., Lagomarsino, S., and Grimaldi, M. G., Appl. Surf. Sci. 73, 90 (1993), and references therein.CrossRefGoogle Scholar
2Derrien, J., Chevrier, J., Le Thanh, V., and Mahan, J. E., Appl. Surf. Sci. 56–58, 382 (1992).Google Scholar
3Chevrier, J., Le Thanh, V., Nitsche, S., and Derrien, J., Appl. Surf. Sci. 56–58, 438 (1992).Google Scholar
4Bost, M. C. and Mehan, J. E., J. Appl. Phys. 58 (7), 2696 (1985).CrossRefGoogle Scholar
5Dimitriadis, C. A., Werner, J. H., Logothetidis, S., Stutzmann, M., Weber, J., and Nesper, R., J. Appl. Phys. 68 (4), 1726 (1990).Google Scholar
6Onda, N., Henz, J., Miiller, E., Mäder, K. A., and von Känel, H., Appl. Surf. Sci. 56–58, 421 (1992).CrossRefGoogle Scholar
7Vazquez de Parga, A. L., de la Figuera, J., Ocal, C., and Miranda, R., Ultramicroscopy 42–44, 845 (1992).Google Scholar
8Sirringhaus, H., Onda, N., Müller-Gubler, E., Müller, P., Stadler, R., and von Kanel, H., Phys. Rev. B 47 (16), 10567 (1993).Google Scholar
9Gerthsen, D., Radermacher, K., Dieker, Ch., and Mantl, S., J. Appl. Phys. 71 (8), 3788 (1992).Google Scholar
10von Kiinel, H., Mader, K. A., Müller, E., Onda, N., and Sirringhaus, H., Phys. Rev. B 45 (23), 13807 (1992).CrossRefGoogle Scholar
11Motta, N., Sgarlata, A., Gaggiotti, G., Patella, F., and Balzarotti, A., Surf. Sci. 284, 257 (1993).CrossRefGoogle Scholar
12Kafader, U., Tuilier, M. H., Pirri, C., Wetzel, P., Gewinner, G., Bolmont, D., Heckmann, O., Chandesris, D., and Magnan, H., Europhys. Lett. 22 (7), 529 (1993).Google Scholar
13Christensen, N. E., Phys. Rev. B 42 (11), 7148 (1990).Google Scholar
14Cheng, H. C., Chen, L. J., and Your, Y. R., in Thin Films and Interfaces II, edited by Baglin, J. E. E., Campbell, D. R., and Chu, W. K. (Mater. Res. Soc. Symp. Proc. 25, Elsevier Science Publishing, New York, 1984), p. 441.Google Scholar
15Cherief, N., d'Anterroches, C., Cinti, R. C., Nguyen Tan, T. A., and Derrien, J., Appl. Phys. Lett. 55 (16), 1671 (1989).CrossRefGoogle Scholar
16Mahan, J. E., Geib, K. M., Robinson, G. Y., Long, R. G., Xinghua, Y., Bai, G., Nicolet, M. A., and Nathan, M., Appl. Phys. Lett. 56 (21), 2126 (1990).Google Scholar
17Vazquez de Parga, A.L., de la Figuera, J., Ocal, C., and Miranda, R., Europhys. Lett. 18 (7), 595 (1992).Google Scholar
18Moritz, H., Rosen, B., Popovic, S., Rizzi, A., and Luth, H. J., Vac. Sci. Technol. B 10 (4), 1704 (1992).Google Scholar
19Cherief, N., Cinti, R., De Crescenzi, M., Derrien, J., Nguyen Tan, T.A., and Veuillen, J. Y., Appl. Surf. Sci. 41–42, 241 (1989).Google Scholar
20Dusausoy, Y., Protas, J., Vandji, R., and Roques, B., Acta Crystallogr. B 27, 1209 (1971).Google Scholar
21Birkholz, U. and Schelm, J., Phys. Status Solidi 34, K177 (1969).Google Scholar
22Geserich, H. P., Sharma, S. K., and Theiner, W. A., Philos. Mag. 27, 1001 (1973).Google Scholar
23Birkholz, U. and Naegele, J., Phys. Status Solidi 39, 197 (1970).CrossRefGoogle Scholar
24Birkholz, U. and Schelm, J., Phys. Status Solidi 27, 413 (1968).Google Scholar
25Ware, R. M. and McNeill, D. J., Proc. IEEE 111, 178 (1964).Google Scholar
26Tiwari, P., Bahtnagar, M., Dat, R., and Narayan, J., Mater. Sci. Eng. B14, 23 (1992).CrossRefGoogle Scholar
27Grundner, M. and Jacob, H., Appl. Phys. A 39, 73 (1986).CrossRefGoogle Scholar
28Neifeld, R. A., Gunapala, S., Liang, G., Shaheen, S. A., Croft, M., Price, J., Simons, D., and Hill, W. T. III, Appl. Phys. Lett. 53, 703 (1988).Google Scholar
29Bauer, E., in Topics in Applied Physics, edited by Groma, R. (Springer, Berlin, 1975), Vol. 4, p. 225.Google Scholar
30Karpenko, O. P., Olk, CH., Doll, G. L., Yalisove, S. M., and Mansfield, J. F. (1994, in press).Google Scholar