Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T12:57:01.300Z Has data issue: false hasContentIssue false

Growth of diamond particles in chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Sumio Iijima
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba 305, Japan
Yumi Aikawa
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba 305, Japan
Kazuhiro Baba
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba 305, Japan
Get access

Abstract

An early stage of diamond growth in hot-filament chemical vapor deposition on silicon substrates was examined by the high resolution electron microscope. “Pretreatment” of the substrate surfaces by diamond powder abrading was found to plant diamond seed crystals with a density of as high as 1011/cm2. These crystals provide sites for subsequent growth of diamond films. The CVD grown diamond particles tend to be cuboctahedra. Smaller particles in nanometer size are faultless, but larger ones of several tens of nanometers develop crystal faults. Some of them may originate from the seed crystals. Degradation of the diamond seed crystals due to the electron beam irradiation is discussed in terms of fabrication of diamond film.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Frank, F. C., in Proc. Jnt. Industrial Diamond Conf., Oxford, edited by Berman, R. (Industrial Diamond Information Bureau, London, 1966), p. 119.Google Scholar
2.Sunagawa, I., Tsukamoto, K., and Yasuda, T., in Materials Science of the Earth's Interior, edited by Sunagawa, I. (Terrapub, Tokyo, 1984), p. 331.Google Scholar
3.Bundy, F.P., Hall, H.T., Strong, H.M., and Wentrorf, R.H. Jr, Nature 176, 51 (1955).CrossRefGoogle Scholar
4.Kanda, H., Ohsawa, T., and Yamaoka, S., J. Cryst. Growth 99, 1183 (1990).CrossRefGoogle Scholar
5.Derjaguin, B.V., Fedoseev, D.V., Lukyanovich, V.M., Spitsyn, B.V., Ryabov, V. A., and Lavrentyev, A. V., J. Cryst. Growth 2, 380 (1968).CrossRefGoogle Scholar
6.Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).CrossRefGoogle Scholar
7.Yarbrough, W.A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
8.Jansen, F., Machonkin, M.A., and Kuhman, D.E., J. Vac. Sci. Technol. A8, 3785 (1990).CrossRefGoogle Scholar
9.Iijima, S., Aikawa, Y., and Baba, M., Appl. Phys. Lett. 57, 2646 (1990).CrossRefGoogle Scholar
10.Hirabayashi, K. and Taniguchi, Y., Appl. Phys. Lett. 53, 1815 (1988).CrossRefGoogle Scholar
11.Narayan, J., Srivatsa, A. R., Peters, M., Yokota, S., and Ravi, K.V., Appl. Phys. Lett. 53, 1823 (1988).CrossRefGoogle Scholar
12.Iijima, S., Jpn. J. Appl. Phys. 26, 357 (1987).CrossRefGoogle Scholar
13.Hioki, T., Ito, S., Noda, M., Doi, Y., Kawamoto, J., and Kamigaito, J., Powder and Powder Metallurgy 35, 271 (1988) (in Japanese).CrossRefGoogle Scholar
14.Ma, J. S., Kawarada, H., Yonehara, T., Suzuki, J., Wei, J., Yokota, Y., and Hiraki, A., Appl. Phys. Lett. 55, 1071 (1989).CrossRefGoogle Scholar