Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T20:43:17.379Z Has data issue: false hasContentIssue false

Growth of boron suboxide crystals in the B–B2O3 system at high pressure and high temperature

Published online by Cambridge University Press:  31 January 2011

Duanwei He*
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, and Core Research for Evolution Science and Technology, Japan Science and Technology Corporation, c/o AML/NIMS, 1–1 Namiki, Tsukuba, Ibaraki, 305–0044 Japan and LANSCE, MS-H805, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Minoru Akaishi
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, and Core Research for Evolution Science and Technology, Japan Science and Technology Corporation, c/o AML/NIMS, 1–1 Namiki, Tsukuba, Ibaraki, 305–0044 Japan
Brian L. Scott
Affiliation:
C-SIC, MS-J514, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Yusheng Zhao
Affiliation:
LANSCE, MS-H805, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a) Address all correspondence to this author. Present address: LANSCE, MS-H805, Los Alamos National Laboratory, Los Alamos, New Mexico 87545. e-mail: [email protected]
Get access

Abstract

B6O crystal growth from the B–B2O3 system was investigated at 1700–2200 °C and 4.5–6.5 GPa by using two different sample assemblies. Single B6O crystals over 100 μm in size have been synthesized at 5.5 GPa and 2100 °C. This makes it possible to study the properties of this interesting material. The factors affecting the B6O crystal morphology, size, color, and growth process were discussed. The solubility of B6O in B2O3 flux was estimated at 5.5 GPa and different temperatures. On the basis of the experimental results, we suggest two methods to grow large B6O crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rizzo, H.F., Simmons, W.C., and Bielstein, H.O., J. Electrochem. Soc. 109, 1079 (1962).Google Scholar
2.Lee, S., Kim, S.W., Bylander, D.M., and Kleinman, L., Phys. Rev. B44, 3550 (1991).CrossRefGoogle Scholar
3.Lundstron, T. and Andreev, Y.G., Mater. Sci. Eng. A 209, 16 (1996).Google Scholar
4.Lundstron, T., J. Solid State Chem. 133, 88 (1997).Google Scholar
5.Badzian, A.R., Appl. Phys. Lett. 53, 2495 (1988).Google Scholar
6.Srikanth, V., Roy, R., Graham, E.K., and Voigt, D.E., J. Am. Ceram. Soc. 74, 3145 (1991).CrossRefGoogle Scholar
7.Liu, X., Zhao, X., Hou, W., and Su, W., J. Alloys Compd. L5, 223 (1995).Google Scholar
8.Olofsson, M. and Lundstrom, T., J. Alloys Compd. 257, 91 (1997).CrossRefGoogle Scholar
9.Pasternak, R.A., Acta Crystallogr. 12, 612 (1959).CrossRefGoogle Scholar
10.Hubert, H., Garvie, L.A.J., Devouard, B., Buseck, P.R., Petuskey, W.T., and McMillan, P.F., Chem. Mater. 10, 1530 (1998).CrossRefGoogle Scholar
11.Hubert, H., Garvie, L.A.J., Buseck, P.R., Petuskey, W.T., and McMillan, P.F., J. Solid State Chem. 133, 356 (1997).Google Scholar
12.Hubert, H., Devouard, B., Garvie, L.A.J., O'keefe, M., Buseck, P.R., Petuskey, W.T., and McMillan, P.F., Nature 391, 376 (1998).CrossRefGoogle Scholar
13.McMillan, P.F., Hubert, H., Chizmeshya, A., Petuskey, W.T., Garvie, L.A.J., and Devouard, B., J. Solid State Chem. 147, 281 (1999).Google Scholar
14.He, D.W., Akaishi, M., and Tanaka, T., Diamond Relat. Mater. 10/8, 1465 (2001).Google Scholar
15.Scott, B.L. et al. (to be published).Google Scholar
16.Mishima, O., Tanaka, J., Yamaoka, S., and Fukunaga, O., Science 238, 181 (1987).CrossRefGoogle Scholar