Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T02:03:51.778Z Has data issue: false hasContentIssue false

Growth of (Ba, Sr)TiO3 thin films by the hydrothermal-electrochemical method and effect of oxygen evolution on their microstructure

Published online by Cambridge University Press:  31 January 2011

Koji Kajiyoshi*
Affiliation:
Development Group II, Research and Development Division, Murata Manufacturing Co., Ltd., 2-26-10, Tenjin, Nagaokakyo, Kyoto 617, Japan
Masahiro Yoshimura
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226, Japan
Yukio Hamaji
Affiliation:
Development Group II, Research and Development Division, Murata Manufacturing Co., Ltd., 2–26–10, Tenjin, Nagaokakyo, Kyoto 617, Japan
Kunisaburo Tomono
Affiliation:
Development Group II, Research and Development Division, Murata Manufacturing Co., Ltd., 2–26–10, Tenjin, Nagaokakyo, Kyoto 617, Japan
Toru Kasanami
Affiliation:
Development Group II, Research and Development Division, Murata Manufacturing Co., Ltd., 2–26–10, Tenjin, Nagaokakyo, Kyoto 617, Japan
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

Thin films in the system BaTiO3–SrTiO3 have been grown on Ti electrodes with control of the Ba/Sr composition in aqueous solutions of (Ba, Sr) (OH)2 by the hydrothermal-electrochemical method. Barium contents of the solid-solution films were always lower than those of the synthesis solutions used. The BaTiO3 and the (Ba, Sr)TiO3 solid-solution films included “crater-shape” defects that resulted from the breakaway of the growing film, whereas no such defects were observed in the SrTiO3 film. This dependence of the defect generation on the film composition was interpreted to be caused by differences of anodically evolved oxygen gas pressure in “short-circuiting paths” that exists characteristically in the films grown by this method.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yoshimura, M., Yoo, S. E., Hayashi, M., and Ishizawa, N., Jpn. J. Appl. Phys. 28, L2007 (1989).CrossRefGoogle Scholar
2.Yoshimura, M., Yoo, S. E., Hayashi, M., and Ishizawa, N., in Ceramic Transactions, Vol. 15, Microelectronic Systems, edited by Nair, K.M., Pohanka, R., and Buchanan, R.C. (The American Ceramic Society, Westerville, OH, 1990), pp. 427436.Google Scholar
3.Ishizawa, N., Yoo, S. E., Hayashi, M., and Yoshimura, M., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 5762.Google Scholar
4.Yoo, S. E., Ishizawa, N., Hayashi, M., and Yoshimura, M., Report of The Research Laboratory of Engineering Materials of Tokyo Institute Technology, No. 16 (1991), pp. 3953.Google Scholar
5.Yoo, S. E., Hayashi, M., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 73, 2561 (1990).CrossRefGoogle Scholar
6.Sakabe, Y., Hamaji, Y., Hayashi, M., Ogino, Y., Ishizawa, N., and Yoshimura, M., in Proceedings of the Fifth U.S.–Japan Seminar on Dielectric and Piezoelectric Ceramics, Kyoto, Japan (1990), pp. 300303.Google Scholar
7.Kajiyoshi, K., Tomono, K., Hamaji, Y., Kasanami, T., and Yoshimura, M., J. Am. Ceram. Soc. 77, 2889 (1994).CrossRefGoogle Scholar
8.Kajiyoshi, K., Tomono, K., Hamaji, Y., Kasanami, T., and Yoshimura, M., J. Mater. Res. 9, 2109 (1994).CrossRefGoogle Scholar
9.Kajiyoshi, K., Tomono, K., Hamaji, Y., Kasanami, T., and Yoshimura, M., J. Am. Ceram. Soc. 78, 1521 (1995).CrossRefGoogle Scholar
10.Kajiyoshi, K., Hamaji, Y., Tomono, K., Kasanami, T., and Yoshimura, M., J. Am. Ceram. Soc. (1995, in press).Google Scholar
11.Sakuma, T., Yamamichi, S., Matsubara, S., Yamaguchi, H., and Miyasaka, Y., Appl. Phys. 57, 2431 (1990).Google Scholar
12.Joshi, P. C. and Krupanidhi, S. B., Appl. Phys. Lett. 61 (13) 1525 (1992).CrossRefGoogle Scholar
13.Bard, A. J. and Faulkner, L.R., Electrochemical Methods—Fundamentals and Applications (John Wiley & Sons, New York, 1980), pp. 699700.Google Scholar
14.Tachibana, K., Boshoku Gijutsu 34, 125 (1985).Google Scholar
15.Macdonald, D. D., Scott, A. C., and Wentrcek, P., J. Electrochem. Soc. 126, 908 (1979).CrossRefGoogle Scholar
16.Macdonald, D. D., Scott, A. C., and Wentrcek, P., J. Electrochem. Soc. 126, 1618 (1979).CrossRefGoogle Scholar
17.Greeley, R. S., Smith, W. T. Jr, Stoughton, R. W., and Lietzke, M. H., J. Phys. Chem. 64, 652 (1960).CrossRefGoogle Scholar
18.Greeley, R. S., Smith, W. T. Jr, Lietzke, M. H., and Stoughton, R. W., J. Phys. Chem. 64, 1445 (1960).CrossRefGoogle Scholar
19.Briggs, D. and Riviére, J. C., in Practical Surface Analysis, Vol. 1, Auger and X-ray Photoelectron Spectroscopy, 2nd ed., edited by Briggs, D. and Seah, M. P. (John Wiley & Sons, Sussex, England, 1983), Chap. 3, pp. 85141.Google Scholar
20. Powder Diffraction File, No. 5–626 (BaTiO3), No. 35–734 (SrTiO3) (Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, Swarthmore, PA).Google Scholar
21.Kajiyoshi, K., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 74, 369 (1991).CrossRefGoogle Scholar
22.Mc, M.Quarrie, J. Am. Ceram. Soc. 38, 444 (1966).Google Scholar
23.Bethe, K. and Welz, F., Mater. Res. Bull. VI, 209 (1971).CrossRefGoogle Scholar
24.Sekine, T., Nagasawa, Y., Kudoh, M., Sakai, Y., Parkes, A. S., Geller, J.D., Mogami, A., and Hirata, K., Handbook of Auger Electron Spectroscopy (JEOL, Tokyo, 1982).Google Scholar
25.Davis, O. L., Design and Analysis of Industrial Experiments (Oliver & Boyd, Edinburgh, 1954), Table M.Google Scholar
26.Box, G., Hunter, W., and Hunter, J., Statistics for Experimenters (John Wiley & Sons, New York, 1978).Google Scholar
27.Taguchi, G., Introduction to Quality Engineering: Designing Quality into Products and Processes (Asian Productivity Organization, Hong Kong, 1986), Chap. 7, pp. 121134.Google Scholar
28.Taguchi, G., System of Experimental Design (Unipub, Kraus International Publication, New York, 1987).Google Scholar
29.Pickering, H. W. and Frankenthal, R. P., J. Electrochem. Soc. 119, 1297 (1972).CrossRefGoogle Scholar
30.Pickering, H. W., Corrosion 42, 125 (1986).CrossRefGoogle Scholar
31.Pickering, H. W., Corrosion Sci. 29, 325 (1989).CrossRefGoogle Scholar
32.Crolet, J. L., J. Mater. Sci. 28, 2577 (1993).CrossRefGoogle Scholar
33.West, A. C., J. Electrochem. Soc. 140, 403 (1993).CrossRefGoogle Scholar