Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T00:24:48.506Z Has data issue: false hasContentIssue false

Growth of (11n) oriented Bi–Ca–Sr–Cu–O films by liquid phase epitaxial method

Published online by Cambridge University Press:  31 January 2011

K. K. Raina
Affiliation:
Center for Electronic Materials, Devices and Systems, Department of Electrical Engineering, Texas A&M University, College Station, Texas 77843-3253
R. K. Pandey
Affiliation:
Center for Electronic Materials, Devices and Systems, Department of Electrical Engineering, Texas A&M University, College Station, Texas 77843-3253
Get access

Abstract

Films of Bi–Ca–Sr–Cu–O (BCSCO) superconductor of the Bi2CaSr2Cu2Ox composition have been grown by the liquid phase epitaxy method (LPE) using a partially closed growth chamber. The films were grown on (110) NdGaO3 substrates by slow cooling under optimized conditions below the peritectic melting point (885 °C) of Bi2CaSr2Cu2O8. Optimization of parameters, such as seed rotation, soak of initial growth temperature, and growth period, results in the formation of the 2122 phase of BCSCO. X-ray diffraction (XRD) measurements show that the films grown on (110) NdGaO3 have a preferred (11n) orientation. The best values of zero resistance transition (Tc0) and critical current density (Jc0) obtained for films grown on (110) NdGaO3 substrates are 87 K and 5.7 × 104 A/cm2 (at 20 K), respectively. The films grown at rotation rates of less than 30 and more than 80 rpm are observed to be associated with a subphase in the Bi2CaSr2Cu2O8 system. Electron microprobe analysis indicates the composition of this subphase to be Bi0.07Ca0.93Sr2Cu5O8. Higher growth temperatures (>860 °C) also encourage the formation of this phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Raina, K. K., Narayanan, S., and Pandey, R. K., J. Mater. Res. 7, 2303 (1992).CrossRefGoogle Scholar
2.Endo, K. K., Yamasaki, H., Misawa, S., Yosida, S., and Kajimura, K., Nature (London) 355, 327 (1992).CrossRefGoogle Scholar
3.Balestrino, G., Foglietti, V., Marinelli, M., Milani, E., Paoletti, A., and Paroli, P., IEEE Trans. Magn. 27, 1589 (1991).CrossRefGoogle Scholar
4.Fukutomi, M., Machida, J., Tanaka, Y., Asano, T., Yamamoto, T., and Maeda, H., Jpn. J. Appl. Phys. 27, L1484 (1988).CrossRefGoogle Scholar
5.Schlom, D. B., Marshall, A. F., Sizemore, J. T., Chen, Z. J., Eckstein, J. N., Bozovic, I., Von Dossonneck, K. E., Harris, J. S. Jr, and Bravmann, J. C., J. Cryst. Growth 55, 702 (1989).Google Scholar
6.Ishizuka, Y. and Miura, T., J. Cryst. Growth 123, 357 (1992).CrossRefGoogle Scholar
7.Kubota, N., Sugimoto, T., Shiohara, Y., and Tanaka, S., J. Mater. Res. 8, 978 (1993).CrossRefGoogle Scholar
8.Sugimoto, T., Kubota, N., Shiohara, Y., and Tanaka, S., Appl. Phys. Lett. 60, 1387 (1992).CrossRefGoogle Scholar
9.Homma, N., Okayama, S., Takahashi, H., Yoshida, I., Morishita, T., Tanaka, S., Haga, T., and Yamaya, K., Appl. Phys. Lett. 59, 1383 (1991).CrossRefGoogle Scholar
10.Kuroda, K., Kojima, K., Wada, O., Tanioku, M., Yokoyma, K., and Hamanaka, K., Jpn. J. Appl. Phys. Lett. 29, L1816 (1990).CrossRefGoogle Scholar