Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T13:22:22.042Z Has data issue: false hasContentIssue false

Growth and thermal stability of (V,Al)2Cx thin films

Published online by Cambridge University Press:  05 July 2012

Yan Jiang*
Affiliation:
Materials Chemistry, RWTH Aachen University, 52074 Aachen, Germany
Riza Iskandar
Affiliation:
Central Facility for Electron Microscopy, RWTH Aachen University, 52074 Aachen, Germany
Moritz to Baben
Affiliation:
Materials Chemistry, RWTH Aachen University, 52074, Aachen, Germany
Tetsuya Takahashi
Affiliation:
Materials Chemistry, RWTH Aachen University, 52074, Aachen, Germany
Jie Zhang
Affiliation:
Materials Chemistry, RWTH Aachen University, 52074, Aachen, Germany
Jens Emmerlich
Affiliation:
Materials Chemistry, RWTH Aachen University, 52074, Aachen, Germany
Joachim Mayer
Affiliation:
Central Facility for Electron Microscopy, RWTH Aachen University, 52074, Aachen, Germany
Conrad Polzer
Affiliation:
Plansee Composite Materials GmbH, 86983 Lechbruck am See, Germany
Peter Polcik
Affiliation:
Plansee Composite Materials GmbH, 86983 Lechbruck am See, Germany
Jochen M. Schneider
Affiliation:
Materials Chemistry, RWTH Aachen University, 52074 Aachen, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Vanadium (V)–aluminum (Al)–carbon (C) thin films were deposited on Al2O3$(11\mathop 2\limits^ - 0)$ substrates at 500 °C by direct current magnetron sputtering using a powder metallurgical composite target with 2:1:1 MAX phase stoichiometry. Transmission electron microscopy (TEM) and x-ray diffraction results suggest that a hexagonal Al-containing vanadium carbide solid solution (V,Al)2Cx was formed. The films exhibited a strong basal plane texture. The lattice parameter of the hexagonal solid solution was dependent on the annealing temperature: the c lattice parameter decreased by 3.45% after annealing for 1 h at 750 °C compared to the as-deposited film. Based on the comparison between experimental and theoretical lattice parameter data, it is reasonable to assume that this annealing-induced change in lattice parameter is a consequence of atomic ordering. Meanwhile, the formation of V2AlC MAX phase was observed at 650 °C and phase-pure V2AlC was obtained at 850 °C. TEM images support the notion that V2AlC forms by nucleation and growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barsoum, M.W.: The Mn+1AXn phases: A new class of solids. Prog. Solid State Chem. 28, 201281 (2000).CrossRefGoogle Scholar
Hettinger, J.D., Lofland, S.E., Finkel, P., Meehan, T., Palma, J., Harrell, K., Gupta, S., Ganguly, A., Raghy, T.E., and Barsoum, M.W.: Electrical transport, thermal transport, and elastic properties of M2AlC (M = Ti, Cr, Nb, and V). Phys. Rev. B 72, 115120 (2005).CrossRefGoogle Scholar
Lofland, S.E., Hettinger, J.D., Harrell, K., Finkel, P., Gupta, S., Barsoum, M.W., and Hug, G.: Elastic and electronic properties of select M2AX phase. Appl. Phys. Lett. 84, 508510 (2004).CrossRefGoogle Scholar
Tian, W.B., Wang, P.L., Zhang, G.J., Kan, Y.M., Li, Y.X., and Yan, D.S.: Synthesis and thermal and electrical properties of bulk Cr2AlC. Scr. Mater. 54, 841846 (2006).CrossRefGoogle Scholar
Hajas, D.E., Scholz, M., Ershov, S., Hallstedt, B., Palmquist, J.P., and Schneider, J.M.: Thermal and chemical stability of Cr2AlC in contact with α-Al2O3 and NiAl. Int. J. Mater. Res. 101(12), 15191523 (2010).CrossRefGoogle Scholar
Sun, Z.M., Li, S., Ahuja, R., and Schneider, J.M.: Calculated elastic properties of M2AlC (M = Ti, V, Cr Nb and Ta). Solid State Commun. 129, 589592 (2004).CrossRefGoogle Scholar
Bouhemadou, A.: Structure, electronic and elastic properties of MAX phases M2GaN (M = Ti, V and Cr). Solid State Sci. 11, 18751881 (2009).CrossRefGoogle Scholar
Schneider, J.M., Sigumonrong, D.P., Music, D., Walter, C., Emmerlich, J., Iskandar, R., and Mayer, J.: Elastic properties of Cr2AlC thin films probed by nanoindentation and ab initio molecular dynamics. Scr. Mater. 57, 11371140 (2007).CrossRefGoogle Scholar
Radovic, M., Barsoum, M.W., Ganguly, A., Zhen, T., Finkel, P., Kalidindi, S.R., and Curzio, E.L.: On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300–1573 K temperature range. Acta Mater. 54, 27572767 (2006).CrossRefGoogle Scholar
Lin, Z.J., Li, M.S., Wang, J.Y., and Zhou, Y.U.: High temperature oxidation and hot corrosion of Cr2AlC. Acta Mater. 55, 61826191 (2007).CrossRefGoogle Scholar
Wang, Q.M., Renteria, A.F., Schroeter, O., Mykhaylonka, R., Leyens, C., Garkas, W., and to Baben, M.: Fabrication and oxidation behavior of Cr2AlC coating on Ti6242 alloy. Surf. Coat. Technol. 204(15), 23432352 (2010).CrossRefGoogle Scholar
Lee, D.B. and Nguyen, T.D.: Cyclic oxidation of Cr2AlC between 1000 and 1300 °C in air. J. Alloys Compd. 464, 434439 (2008).CrossRefGoogle Scholar
Lin, Z.J., Li, M.S., Wang, J.Y., and Zhou, Y.C.: Influence of water vapor on the oxidation behavior of Ti3AlC2 and Ti2AlC. Scr. Mater. 58, 2932 (2008).CrossRefGoogle Scholar
Barsoum, M.W., Tzenov, N., Procopio, A., El-Raghy, T., and Ali, M.: Oxidation of Tin+1AlXn (n = 1–3 and X = C, N). J. Electrochem. Soc. 148(8), C551C562 (2001).CrossRefGoogle Scholar
Hajas, D.E., To Baben, M., Hallstedt, B., Iskandar, R., Mayer, J., and Schneider, J.M.: Oxidation of Cr2AlC coatings in the temperature range from 1230 to 1410 °C. Surf. Coat. Technol. 206, 591598 (2011).CrossRefGoogle Scholar
Song, G.M., Pei, Y.T., Sloof, W.G., Li, S.B., De Hosson, H.Th.M., and van der Zwaag, S.: Oxidation-induced crack healing in Ti3AlC2 ceramics. Scr. Mater. 58, 1316 (2008).CrossRefGoogle Scholar
Sigumonrong, D.P., Zhang, J., Zhou, Y.C., Music, D., Emmerlich, J., Mayer, J., and Schneider, J.M.: Interfacial structure of V2AlC thin films deposited on (11–20) sapphire. Scr. Mater. 64, 347350 (2011).CrossRefGoogle Scholar
Schneider, J.M., Mertens, R., and Music, D.: Structure of V2AlC studied by theory and experiment. J. Appl. Phys. 99, 013501 (2006).CrossRefGoogle Scholar
Etzkorn, J., Ade, M., and Hillebrecht, H.: V2AlC, V4AlC3-x (x ≈ 0.31), and V12Al3C8: Synthesis, crystal growth, structure, and superstructure. Inorg. Chem. 46, 76467653 (2007).CrossRefGoogle ScholarPubMed
Sigumonrong, D.P., Zhang, J., Zhou, Y., Music, D., and Schneider, J.M.: Synthesis and elastic properties of V2AlC thin films by magnetron sputtering from elemental targets. J. Phys. D: Appl. Phys. 42, 185408185411 (2009).CrossRefGoogle Scholar
Gupta, S. and Barsoum, M.W.: Synthesis and oxidation of V2AlC and (Ti0.5, V0.5)2AlC in air. J. Electrochem. Soc. 151, D24D29 (2004).CrossRefGoogle Scholar
Bowman, A.L., Wallace, T.C., Yarnell, J.L., Wenzel, R.G., and Storms, E.K.: The crystal structures of V2C and Ta2C. Acta Cryst. 19, 69 (1965).CrossRefGoogle Scholar
Gebhardt, T., Hajas, D.E., Scholz, M., Hallstedt, B., Cappi, B., Song, J., Telle, R., and Schneider, J.M.: Strength degradation of NiAl-coated sapphire fiber with a V2AlC interlayer. Mater. Sci. Eng., A 525, 20206 (2009).-CrossRefGoogle Scholar
Eklund, P., Beckers, M., Jansson, U., Högberg, H., and Hultman, L.: The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Films 518, 18511878 (2010).CrossRefGoogle Scholar
Petrov, I., Barna, P.B., Hultman, L., and Greene, J.E.: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21(5), 117128 (2003).CrossRefGoogle Scholar
Abdulkadhim, A., To Baben, M., Schnabel, V., Hans, M., Thieme, N., Polzer, C., Polcik, P., and Schneider, J.M.: Crystallization Kinetics of V2AlC. Thin Solid Films 520, 1930 (2012).CrossRefGoogle Scholar
Schulz, L.G.: A direct method of determining preferred orientation of a flat reflection sample using a Geiger counter x-ray spectrometer. J. Appl. Phys. 20, 10301032 (1949).CrossRefGoogle Scholar
Mitchell, D.R.G.: Difftools: Electron diffraction software tools for digital micrograph. Microsc. Res. Tech. 71, 588593 (2008).CrossRefGoogle Scholar
Stadelmann, P.: Electron Microscopy Software Java Version, JEMS, ver 3.3425U2008, CIME-EPFL. Lausanne, Switzerland.Google Scholar
Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133A1138 (1965).CrossRefGoogle Scholar
Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B 59, 17581775 (1999).CrossRefGoogle Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Blöchl, P.E.: Projector augmented wave method. Phys. Rev. B 50, 17953 (1994).CrossRefGoogle ScholarPubMed
Zunger, A.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).CrossRefGoogle ScholarPubMed
Cowley, J.M.: X-ray measurement of order in single crystal of Cu3Au. J. Appl. Phys. 21, 24 (1950).CrossRefGoogle Scholar
Abrikosov, I.A., Niklasson, A.M.N., Simak, S.I., Johansson, B., Ruban, A.V., and Skriver, H.L.: Order-N Green’s function technique for local environment effects in alloys. Phys. Rev. Lett. 76, 4203 (1996).CrossRefGoogle ScholarPubMed
Abrikosov, I.A., Simak, S.I., Johansson, B., Ruban, A.V., and Skriver, H.L.: Locally self-consistent Green’s function approach to the electronic structure problem. Phys. Rev. B 56, 9319 (1997).CrossRefGoogle Scholar
Tang, L. and Laughlin, D.E.: Electron diffraction patterns of fibrous and lamellar textured polycrystalline thin films. I. Theory. J. Appl. Crystallogr. 29, 411418 (1996).CrossRefGoogle Scholar
Ohring, M.: The Materials Science of Thin Films, 2nd ed. (Academic Press, London, UK, 2001).Google Scholar
Cottrell, A.H.: Carbides of group VA transition metals. Mater. Sci. Technol. 11, 100104 (1995).CrossRefGoogle Scholar
Wilhelmsson, O., Eklund, P., Högberg, H., Hultman, L., and Jansson, U.: Structural, electrical and mechanical characterization of magnetron-sputtered V-Ge-C thin films. Acta Mater. 56, 25632569 (2008).CrossRefGoogle Scholar
Wilhelmsson, O., Palmquist, J-P., Lewin, E., Emmerlich, J., Eklund, P., Persson, P.O.A., Högberg, H., Li, S., Ahuja, R., Eriksson, O., Hultman, L., and Jansson, U.: Deposition and characterization of ternary thin films within the Ti-Al-C system by DC magnetron sputtering. J. Cryst. Growth 291, 290300 (2006).CrossRefGoogle Scholar
Schneider, J.M., Hjoervarsson, B., Wang, X., and Hultman, L.: On the effect of hydrogen incorporation in strontium titanate layers grown by high-vacuum magnetron sputtering. Appl. Phys. Lett. 75, 34763478 (1999).CrossRefGoogle Scholar