Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T06:50:14.176Z Has data issue: false hasContentIssue false

Growth and properties of Si–N–C–O nanocones and graphitic nanofibers synthesized using three-nanometer diameter iron/platinum nanoparticle-catalyst

Published online by Cambridge University Press:  01 April 2005

H. Cui*
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
X. Yang
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996
H.M. Meyer
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
L.R. Baylor
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
M.L. Simpson
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996; and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
W.L. Gardner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D.H. Lowndes
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
L. An
Affiliation:
Department of Chemistry, Duke University, Durham, North Carolina 27708
J. Liu
Affiliation:
Department of Chemistry, Duke University, Durham, North Carolina 27708
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Cone-shaped nanostructures of mixed composition (nanocones) and largely graphitic nanofibers were synthesized on silicon substrates using iron/platinum alloy nanoparticles as the catalyst in a direct-current plasma enhanced chemical vapor deposition reactor. The catalyst nanoparticles were monodisperse in size with an average diameter of 3 (±1) nm. The nanocones were produced on laterally widely dispersed catalyst particles and were oriented perpendicular to the substrate surface with an amorphous internal structure. The nanocones were produced by gas phase mixing and deposition of plasma-sputtered silicon, nitrogen, carbon, and oxygen species on a central backbone nucleated by the Fe–Pt catalyst particle. Field emission measurements showed that a very high turn-on electric field was required for electron emission from the nanocones. In contrast, the graphitic nanofibers that were produced when silicon sputtering and redeposition were minimized had the “stacked-cup” structure, and well-defined voids could be observed within nanofibers nucleated from larger catalyst particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guillorn, M.A., Melechko, A.V., Merkulov, V.I., Hensley, D.K., Simpson, M.L. and Lowndes, D.H.: Self-aligned gated field emission devices using single carbon nanofiber cathodes. Appl. Phys. Lett. 81, 3660 (2002).CrossRefGoogle Scholar
2. Baylor, L.R., Lowndes, D.H., Simpson, M.L., Thomas, C.E., Guillorn, M.A., Merkulov, V.I., Whealton, J.H., Ellis, E.D., Hensley, D.K. and Melechko, A.V.: Digital electrostatic electron-beam array lithography. J. Vac. Sci. Technol. B 20, 2646 (2002).CrossRefGoogle Scholar
3. Zhang, L., Melechko, A.V., Merkulov, V.I., Guillorn, M.A., Simpson, M.L., Lowndes, D.H. and Doktycz, M.J.: Controlled transport of latex beads through vertically aligned carbon nanofiber membranes. Appl. Phys. Lett. 81, 135 (2002).CrossRefGoogle Scholar
4. Guillorn, M.A., McKnight, T.E., Melechko, A., Merkulov, V.I., Britt, P.F., Austin, D.W., Lowndes, D.H. and Simpson, M.L.: Individually addressable vertically aligned carbon nanofiber-based electrochemical probes. J. Appl. Phys. 91, 3824 (2002).CrossRefGoogle Scholar
5. Cui, H., Kalinin, S.V., Yang, X. and Lowndes, D.H.: Growth of carbon nanofibers on tipless cantilevers for high resolution topography and magnetic force imaging. Nano Lett. 4, 2157 (2004).CrossRefGoogle Scholar
6. Ren, Z.F., Huang, Z.P., Wang, D.Z., Wen, J.G., Xu, J.W., Wang, J.H., Calvet, L.E., Chen, J., Klemic, J.F. and Reed, M.A.: Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75, 1086 (1999).CrossRefGoogle Scholar
7. Merkulov, V.I., Lowndes, D.H., Wei, Y.Y., Eres, G. and Voelkl, E.: Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl. Phys. Lett. 76, 3555 (2000).CrossRefGoogle Scholar
8. Teo, K.B.K., Lee, S.B., Chhowalla, M., Semet, V., Binh, V.T., Groening, O., Castignolles, M., Loiseau, A., Pirio, G., Legagneux, P., Pribat, D., Hasko, D.G., Ahmed, H., Amaratunga, G.A.J. and Milne, W.I.: Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—How uniform do they grow? Nanotechnology 14, 204 (2003).CrossRefGoogle Scholar
9. Merkulov, V.I., Melechko, A.V., Guillorn, M.A., Lowndes, D.H. and Simpson, M.L.: Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl. Phys. Lett. 79, 2970 (2001).CrossRefGoogle Scholar
10. Cui, H., Zhou, O. and Stoner, B.R.: Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88, 6072 (2000).CrossRefGoogle Scholar
11. Bower, C., Zhou, O., Zhu, W., Werder, D.J. and Jin, S.H.: Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77, 2767 (2000).CrossRefGoogle Scholar
12. Cui, H., Yang, X., Simpson, M.L., Lowndes, D.H. and Verela, M.: Initial growth of vertically aligned carbon nanofibers. Appl. Phys. Lett. 84, 4077 (2004).CrossRefGoogle Scholar
13. Wang, Y.Y., Tang, G.Y., Koeck, F.M., Brown, B., Garguilo, J.M. and Nemanich, R.J.: Experimental studies of the formation process and morphologies of carbon nanotubes with bamboo mode structures. Diamond Relat. Mater. 13, 1287 (2004).CrossRefGoogle Scholar
14. Merkulov, V.I., Melechko, A.V., Guillorn, M.A., Lowndes, D.H. and Simpson, M.L.: Sharpening of carbon nanocone tips during plasma-enhanced chemical vapor growth. Chem. Phys. Lett. 350, 381 (2001).10.1016/S0009-2614(01)01312-4CrossRefGoogle Scholar
15. Baylor, L.R., Merkulov, V.I., Ellis, E.D., Guillorn, M.A., Lowndes, D.H., Melechko, A.V., Simpson, M.L. and Whealton, J.H.: Field emission from isolated individual vertically aligned carbon nanocones. J. Appl. Phys. 91, 4602 (2002).CrossRefGoogle Scholar
16. Sun, S.H., Murray, C.B., Weller, D., Folks, L. and Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000).CrossRefGoogle ScholarPubMed
17. Merkulov, V.I., Guillorn, M.A., Lowndes, D.H., Simpson, M.L. and Voelkl, E.: Shaping carbon nanostructures by controlling the synthesis process. Appl. Phys. Lett. 79, 1178 (2001).10.1063/1.1395517CrossRefGoogle Scholar
18. Hofmann, S. and Zalar, A.: Depth profiling with sample rotation—Capabilities and limitations. Surf. Interface Anal. 21, 304 (1994).CrossRefGoogle Scholar
19. Saito, Y.: Nanoparticles and filled nanocapsules. Carbon 33, 979 (1995).CrossRefGoogle Scholar
20. Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F. and Norskov, J.K.: Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426 (2004).CrossRefGoogle ScholarPubMed
21. Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J. and Milne, W.I.: Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90, 5308 (2001).CrossRefGoogle Scholar
22. Wen, J.G., Huang, Z.P., Wang, D.Z., Chen, J.H., Yang, S.X., Ren, Z.F., Wang, J.H., Calvet, L.E., Chen, J., Klemic, J.F. and Reed, M.A.: Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films. J. Mater. Res. 16, 3246 (2001).10.1557/JMR.2001.0447CrossRefGoogle Scholar
23. Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Pirio, G., Legagneux, P., Wyczisk, F., Olivier, J. and Pribat, D.: Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy. J. Vac. Sci. Technol. B 20, 116 (2002).CrossRefGoogle Scholar
24. Yang, X.J., Guillorn, M.A., Austin, D., Melechko, A.V., Cui, H.T., Meyer, H.M., Merkulov, V.I., Caughman, J.B.O., Lowndes, D.H. and Simpson, M.L.: Fabrication and characterization of carbon nanofiber-based vertically integrated Schottky barrier junction diodes. Nano Lett. 3, 1751 (2003).CrossRefGoogle Scholar
25. Melechko, A.V., McKnight, T.E., Hensley, D.K., Guillorn, M.A., Borisevich, A.Y., Merkulov, V.I., Lowndes, D.H. and Simpson, M.L.: Large-scale synthesis of arrays of high-aspect-ratio rigid vertically aligned carbon nanofibres. Nanotechnology 14, 1029 (2003).CrossRefGoogle Scholar