Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T21:51:21.306Z Has data issue: false hasContentIssue false

Growth and characteristics of AlGaN/GaN heterostructures on sp2-bonded BN by metal–organic chemical vapor deposition

Published online by Cambridge University Press:  28 July 2016

Qing Paduano*
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433
Michael Snure
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433
Gene Siegel
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433; and Wyle Laboratories, Inc., 2601 Mission Point Blvd., Dayton, OH 45431
Darren Thomson
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433
David Look
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433; Wyle Laboratories, Inc., 2601 Mission Point Blvd., Dayton, OH 45431; and Semiconductor Research Center, Wright State University, Dayton, OH 45435
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

AlGaN/GaN heterostructures were grown by metal–organic chemical vapor deposition (MOCVD) on sp2-bonded BN using AlN as a nucleation layer. The best x-ray diffraction rocking curve full-width-at-half-maximums (FWHMs) are 0.13° and 0.17° for the GaN (0002) and ( $10\bar 12$ ) diffraction peaks. Hall-effect measurements show room temperature mobility near 2000 cm/V·s with sheet carrier density of ∼1 × 1013 cm−2, comparable to the best values obtained on sapphire using Fe-doped GaN buffers. The best low temperature mobility of the 2-dimensional electron gas (2DEG) is ∼33,000 cm2/V·s; indicating that the dominant scattering mechanism limiting the transport of 2DEG is interface roughness. Good quality BN grown directly onto sapphire is shown to be effective for reducing parallel conduction that exists due to residual donor impurities in the buffer. Luminescence measurements indicate good optical quality of the GaN/BN/sapphire. The residual strain in the GaN layer is found to be almost completely eliminated when it is released from the substrate.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Eastman, L.F., Tilak, V., Smart, J., Green, B.M., Chumbers, E.M., Dimitrov, R., Kim, H., Ambacher, O.S., Weiman, N., and Prunty, T.: Undoped AlGaN/GaN HEMTs for microwave power amplification. IEEE Trans. Electron Devices 48, 279 (2001).Google Scholar
Wu, Y.F., Kapolnek, D., Ibbetson, J.P., Parikh, P., Keller, B.P., and Mishra, U.K.: Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48, 586 (2001).Google Scholar
Nakamura, S. and Krames, M.R.: History of gallium-nitride-based light-emitting diodes for illumination. Proc. IEEE 101, 2211 (2013).Google Scholar
Nakamura, S., Mukai, T., and Senoh, M.: Candela-class high brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687 (1994).CrossRefGoogle Scholar
Mitani, E., Aojima, M., Maekawa, A., and Sano, S.: An 800-W AlGaN/GaN HEMT for S-band high-power application. CSMantech on-line Dig. (2007).Google Scholar
Schellenberg, J., Kim, B., and Phan, T.: W-band, broadband 2W GaN MMIC. In IEEE MTT-S Int. Microw. Symp. Dig., June 1–4, 2013.Google Scholar
Gaska, R., Osinsky, A., Yang, J.W., and Shur, M.S.: Self-heating in high power AlGaN/GaN HFETs. IEEE Electron Device Lett. 19, 89 (1998).Google Scholar
Alomari, M., Dussaigne, A., Martin, D., Grandjean, N., Gaquiere, C., and Kohn, E.: AlGaN/GaN HEMT on (111) single crystalline diamond. Electron. Lett. 46, 299 (2010).CrossRefGoogle Scholar
Hirama, K., Taniyasu, Y., and Kasu, M.: AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 98, 162112 (2011).CrossRefGoogle Scholar
Kim, J., Bayram, C., Park, H., Cheng, C-W., Dimitrakopoulos, C., Ott, J.A., Reuter, K.B., Bedell, S.W., and Sadana, D.K.: Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5 (2014).Google Scholar
Nepal, N., Wheeler, V.D., Anderson, T.J., Kub, F.J., Mastro, M.A., Myers-Ward, R.L., Qadri, S.B., Freitas, J.A., Hernandez, S.C., Nyakiti, L.O., Walton, S.G., Gaskill, K., and Eddy, C.R. Jr.: Epitaxial growth of III–nitride/graphene heterostructures for electronic devices. Appl. Phys. Express 6, 061003 (2013).Google Scholar
Chung, K., Lee, C.H., and Yi, G.C.: Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 330, 655 (2010).CrossRefGoogle ScholarPubMed
Hiroki, M., Kumakura, K., Kobayahi, Y., Akasaka, T., Makimoto, T., and Yamamoto, H.: Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN. Appl. Phys. Lett. 105, 193509 (2014).CrossRefGoogle Scholar
Kobayashi, Y., Kumakura, K., Akasaka, T., and Makimoto, T.: Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223 (2012).CrossRefGoogle ScholarPubMed
Cordier, Y., Azize, M., Baron, N., Chenot, S., Tottereau, O., and Massies, J.: AlGaN/GaN HEMTs regrown by MBE on epi-ready semi-insulating GaN-on-sapphire with inhibited interface contamination. J. Cryst. Growth 309, 1 (2007).Google Scholar
Wu, M., Leach, J.H., Ni, X., Li, X., Xie, J., Doğan, S., Özgür, Ü., Morkoça, H., Paskova, T., Preble, E., Evans, K.R., and Lu, C-Z.: InAlN/GaN heterostructure field-effect transistors on Fe-doped semi-insulating GaN substrates. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom., 28, 908 (2010).Google Scholar
Choi, Y.C., Pophristic, M., Cha, H-Y., Peres, B., Spencer, M.G., and Eastman, L.F.: The effect of an Fe-doped GaN buffer on off-state breakdown characteristics in AlGaN/GaN HEMTs on Si substrate. IEEE Trans. Electron Devices 53(12), 2926 (2006).CrossRefGoogle Scholar
Eblabla, A., Li, X., Thayne, I., Wallis, D.J., Guiney, I., and Elgaid, K.: High performance GaN high electron mobility transistors on low resistivity silicon for X-band applications. IEEE Trans. Electron Dev Lett. 36(9), 899 (2015).Google Scholar
Heikman, S., Keller, S., Mates, T., DenBaars, S.P., and Mishra, U.K.: Growth and characteristics of Fe-doped GaN. J. Cryst. Growth 248, 513 (2013).Google Scholar
Paduano, Q.S. and Snure, M.: Self-terminating growth in hexagonal boron nitride by metal organic chemical vapor deposition. Appl. Phys. Express 7, 071004 (2014).Google Scholar
AlBalushi, Z.Y., Miyagi, T., Lin, Y-C., Wang, K., Calderin, L., Bhimanapati, G., Redwing, J., and Robinson, J.: The impact of graphene properties on GaN and AlN nucleation. Surf. Sci. 634, 81 (2015).Google Scholar
Dunn, C.G. and Kogh, E.F.: Comparison of dislocation densities of primary and secondary recrystallization grains of Si–Fe. Acta Metall. 5, 548 (1957).CrossRefGoogle Scholar
Srikant, V., Speck, J.S., and Clarke, D.R.: Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 82, 4286 (1997).CrossRefGoogle Scholar
Jena, D., Smorchkova, Y., Elsass, C., Gossard, A.C., and Mishra, U.K.: Electron transport and intrinsic mobility limits in two-dimensional electron gases of III–V nitride heterostructures. arXiv:cond-mat/0103461, (2001).Google Scholar
Jena, D., Gossard, A.C., and Mishra, U.K.: Dislocation scattering in a two-dimensional electron gas. Appl. Phys. Lett. 76, 1707 (2000).Google Scholar
Paduano, Q.S., Snure, M., and Shoaf, J.: Effect of V/III ratio on the growth of hexagonal boron nitride by MOCVD. MRS Proc. 1726, msrf14-1726-j04-26 (2015).Google Scholar
Snure, M., Paduano, Q., and Kiefer, A.: Effect of surface nitridation on the epitaxial growth of few-layer sp2 BN. J. Cryst. Growth 436, 16 (2016).Google Scholar
Smorchkova, I.P., Keller, S., Heikman, S., Elsass, C.R., Heying, B., Fini, P., Speck, J.S., and Mishra, U.K.: Two-dimensional electron-gas AlN/GaN heterostructures with extremely thin AlN barriers. Appl. Phys. Lett. 77, 3998 (2000).CrossRefGoogle Scholar
Lisesivdin, S.B., Yildiz, A., Balkan, N., Kasap, M., Ozcelik, S., and Ozbay, E.: Scattering analysis of two-dimensional electrons in AlGaN/GaN with bulk related parameters extracted by simple parallel conduction extraction method. J. Appl. Phys. 108, 013712 (2010).Google Scholar
Look, D.C., Fang, Z.Q., and Claflin, B.: Identification of donors, acceptors, and traps in bulk-like HVPE GaN. J. Cryst. Growth 281, 143 (2005).Google Scholar
Kim, H. and Andersson, T.G.: Characterization of Al x Ga1−x N layers grown by molecular beam epitaxy. Phys. B 308–310, 93 (2001).Google Scholar
Reshchilov, M.A. and Morkoc, H.: Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005).Google Scholar
Viswanath, A.K., Lee, J.I., Yu, S., Kim, D., Choi, Y., and Hong, C.: Photoluminescence studies of excitonic transitions in GaN epitaxial layers. J. Appl. Phys. 84, 3848 (1998).Google Scholar
Zhao, D.G., Xu, S.J., Xie, M.H., and Tong, S.Y.: Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Appl. Phys. Lett. 83, 677 (2003).CrossRefGoogle Scholar
Zang, K.Y. and Chua, S.J.: Orders of magnitude reduction in dislocation density in GaN grown on Si (111) by nano lateral epitaxial overgrowth. Phys. Status Solidi C 5, 1585 (2008).CrossRefGoogle Scholar
Kitamura, K., Nakashima, S., Nakamura, N., Furuta, K., and Okumura, H.: Raman scattering analysis of GaN with various dislocation densities. Phys. Status Solidi C 5, 1789 (2008).CrossRefGoogle Scholar
Harima, H.: Properties of GaN and related compounds studied by means of Raman scattering. J. Phys.: Condens. Matter 14, R967 (2002).Google Scholar
Wagner, J-M. and Bechstedt, F.: Phonon deformation potentials of α-GaN and -AlN: An ab initio calculation. Appl. Phys. Lett. 77, 346 (2000).Google Scholar