Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T14:34:18.476Z Has data issue: false hasContentIssue false

Growth and assembly of monodisperse Ag nanoparticles by exchanging the organic capping ligands

Published online by Cambridge University Press:  31 January 2011

Qing Peng*
Affiliation:
Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
*
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Nearly monodisperse Ag nanoparticles capped with octadecylamine were prepared by direct thermal decomposition of silver nitrate in octadecylamine. Then the “oriented attachment” assembly process of these monodisperse nanoparticles was exhibited by exchanging the organic capping ligands, and Ag short nanorods capped with dodecanethiol could be obtained as a result. The composition of Ag was analyzed by x-ray diffraction, and the morphological change from nanoparticle to short-nanorod was examined by transmission electron microscopy. Moreover, we also propose a probable mechanism for this transformation process.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liao, J., Zhang, Y., Yu, W., Xu, L., Ge, C., Liu, J., Gu, N.: Linear aggregation of gold nanoparticles in ethanol. Colloids Surf. A 223, 177 (2003)CrossRefGoogle Scholar
2.Harfenist, S.A., Wang, Z.L., Alvarez, M.A., Vezmar, I., Whetten, R.P.: Highly oriented molecular Ag nanocrystal arrays. J. Phys. Chem. 100, 13904 (1996)CrossRefGoogle Scholar
3.Motte, L., Billoudet, F., Lacaze, E., Douin, J., Pileni, M.P.: Self-organization into 2D and 3D superlattices of nanosized particles differing by their size. J. Phys. Chem. B 101, 138 (1997)CrossRefGoogle Scholar
4.Murray, C.B., Kagan, C.R., Bawendi, M.G.: Self organization of CdSe nanocrystallites into three dimensional quantum dot superlattices. Science 270, 1335 (1995)CrossRefGoogle Scholar
5.Kalsin, A.M., Fialkowski, M., Paszewski, M., Smoukov, S.K., Bishop, K.J.M., Grzybowski, B.A.: Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420 (2006)CrossRefGoogle ScholarPubMed
6.Korgel, B.A., Fitzmaurice, D.: Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater. 10, 661 (1998)3.0.CO;2-L>CrossRefGoogle Scholar
7.Pacholski, C., Kornowski, A., Weller, H.: Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 41, 1188 (2002)3.0.CO;2-5>CrossRefGoogle ScholarPubMed
8.Tang, Z.Y., Kotov, N.A., Giersig, M.: Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237 (2002)CrossRefGoogle ScholarPubMed
9.Penn, R.L., Banfield, J.F.: Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 281, 969 (1998)CrossRefGoogle ScholarPubMed
10.Cho, K.S., Talapin, D.V., Gaschler, W., Murray, C.B.: Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140 (2005)CrossRefGoogle ScholarPubMed
11.Lu, W.G., Gao, P.X., Jian, W.B., Wang, Z.L., Fang, J.Y.: Perfect orientation ordered in-situ one-dimensional self-assembly of Mn-doped PbSe nanocrystals. J. Am. Chem. Soc. 126, 14816 (2004)CrossRefGoogle ScholarPubMed
12.Sun, Y.G., Xia, Y.N.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002)CrossRefGoogle ScholarPubMed
13.Link, S., El-Sayed, M.A.: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410 (1999)CrossRefGoogle Scholar
14.Penner, R.M.: Mesoscopic metal particles and wires by electrodeposition. J. Phys. Chem. B 106, 3339 (2002)CrossRefGoogle Scholar
15.Linnert, T., Mulvaney, P., Henglein, A., Weller, H.: Long-lived nonmetallic silver clusters in aqueous solution: Preparation and photolysis. J. Am. Chem. Soc. 112, 4657 (1990)CrossRefGoogle Scholar
16.Jin, R.C., Cao, Y.W., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G.: Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901 (2001)CrossRefGoogle ScholarPubMed
17.Yin, Y.D., Li, Z.Y., Zhong, Z.Y., Gates, B., Xia, Y.N., Venkateswaran, S.: Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process. J. Mater. Chem. 12, 522 (2002)CrossRefGoogle Scholar
18.Bunge, S.D., Boyle, T.J., Headley, T.J.: Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett. 3, 901 (2003)CrossRefGoogle Scholar
19.Lin, X.Z., Teng, X., Yang, H.: Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor. Langmuir 19, 10081 (2003)CrossRefGoogle Scholar
20.Abe, K., Hanada, T., Yoshida, Y., Tanigaki, N., Takiguchi, H., Nagasawa, H., Nakamoto, M., Yamaguchi, T., Yase, K.: Two-dimensional array of silver nanoparticles. Thin Solid Films 327–329, 524 (1998)CrossRefGoogle Scholar
21.Lee, S.J., Han, S.W., Kim, K.: Perfluorocarbon-stabilized silver nanoparticles manufactured from layered silver carboxylates. Chem. Commun. 442 (2002)CrossRefGoogle ScholarPubMed
22.Hiramatsu, H., Osterloh, F.E.: A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 16, 2509 (2004)CrossRefGoogle Scholar
23.Chen, M., Feng, Y.G., Wang, X., Li, T.C., Zhang, J.Y., Qian, D.J.: Silver nanoparticles capped by oleylamine: Formation, growth, and self-organization. Langmuir 23, 5296 (2007)CrossRefGoogle ScholarPubMed
24.Wang, D.S., Xie, T., Peng, Q., Li, Y.D.: Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 130, 4016 (2008)CrossRefGoogle ScholarPubMed
25.Wang, D.S., Xie, T., Peng, Q., Li, Y.D.: Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals. Chem. Eur. J. 14, 2507 (2008)CrossRefGoogle ScholarPubMed