Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T12:45:10.143Z Has data issue: false hasContentIssue false

Graphene-family nanomaterials assembled with cobalt oxides and cobalt nanoparticles as hybrid supercapacitive electrodes and enzymeless glucose detection platforms

Published online by Cambridge University Press:  27 December 2016

Sanju Gupta*
Affiliation:
Department of Physics and Astronomy and Applied Materials Institute, Western Kentucky University, KY 42101, USA
Sara B. Carrizosa
Affiliation:
Department of Chemistry, Western Kentucky University, KY 42101, USA
Benjamin McDonald
Affiliation:
Department of Geology, Western Kentucky University, KY 42101, USA
Jacek Jasinski
Affiliation:
Department of Chemical Engineering and Conn Center for Renewable Energy Research, University of Louisville, Kentucky, KY 40292, USA
Nicholas Dimakis
Affiliation:
Department of Physics, The University of Texas-Rio Grande Valley, TX 78539, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report the development of hybrids consisting of supercapacitive graphene oxide (GO), reduced GO (rGO), electrochemically reduced GO (ErGO), multilayer graphene (MLG) decorated with pseudocapacitive nanostructured cobalt oxides (CoO, Co3O4) and nanoparticles (CoNP) via electrodeposition and hydrothermal synthesis facilitating chemically bridged (covalently and electrostatically anchored) interfaces with tunable properties. These hybrid samples showed heterogeneous transport behavior determining diffusion coefficient (4 × 10−8–6 × 10−6 m2/s) following CoO/MLG < Co3O4/MLG < Co3O4/rGOHT < CoO/ErGO, CoNP/MLG and delivering the maximum specific capacitance >550 F/g for Co3O4/ErGO and Co3O4/MLG. We found an ultrahigh sensitivity of 4.57 mA/(mM cm2) and excellent limit of glucose detection <50 nM following Co3O4/rGOHT < CoO/ErGO < CoNP/MLG < Co3O4/MLG. These findings are due to open pore network and topologically multiplexed conductive pathways provided by graphene nanoscaffolds to ensure rapid charge transfer and ion conduction. Density functional theory determined density of states in the vicinity of Fermi level in-turn providing contribution toward electroactivity due to orbital re-hybridization.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, Q., Zhao, Q., Zhang, H., Li, J., Wang, X., and Wang, F.: Water dispersed conducting polyaniline nanofibers for high-capacity rechargeable lithium–oxygen battery. ACS Macro Lett. 2, 92 (2013).Google Scholar
Rajesh, T. and Kumar, D.A.: Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens. Actuators, B 136, 275 (2009).Google Scholar
Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S., Miller, J.R., and Simon, P.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011).Google Scholar
Torad, N.L., Salunkhe, R.R., Li, Y., Hamoudi, H., Imura, M., Sakka, Y., Hu, C-C., and Yamauchi, Y.: Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem. Eur. J. 20, 7895 (2014).CrossRefGoogle ScholarPubMed
Lu, Q., Chen, J.G., and Xiao, J.Q.: Nanostructured electrodes for high-performance pseudocapacitors. Angew. Chem. Int. Ed. 52, 1992 (2013).CrossRefGoogle ScholarPubMed
Augustyn, V., Simon, P., and Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014).Google Scholar
Simon, P. and Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008). and references therein. CrossRefGoogle ScholarPubMed
Gupta, S., Price, C., and Heintzman, E.: Conducting polymer nanostructures and nanocomposites with carbon Nanotubes: Hierarchical assembly by molecular electrochemistry, growth aspects and property characterization. J. Nanosci. Nanotechnol. 16, 374 (2016).Google Scholar
Gupta, S., Hughes, M., Windle, A.H., and Robertson, J.: Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy. J. Appl. Phys. 95, 2038 (2004).Google Scholar
Heinze, J., Fontana-Uribe, B.A., and Ludwigs, S.: Electrochemistry of conducting polymers–persistent models and new concepts. Chem. Rev. 110, 4724 (2010).Google Scholar
Roth, S., Graupner, W., and McNeillis, P.: Survey of industrial applications of conducting polymers. Acta Phys. Pol., A 87, 699 (1995).Google Scholar
Holze, R. and Wu, Y.P.: Intrinsically conducting polymers in electrochemical energy technology: Trends and progress. Electrochim. Acta 122, 83 (2014).Google Scholar
Gupta, S., Heintzman, E., and Price, C.: Electrostatic layer-by-layer self-assembled graphene/multi-walled carbon nanotubes hybrid multilayers as efficient ‘all carbon’ supercapacitors. J. Nanosci. Nanotechnol. 16, 4771 (2016).Google Scholar
Gupta, S. and Price, C.: Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical–chemical interfacial processes. AIP Adv. 5, 107113 (2016).Google Scholar
Makino, S., Yamauchi, Y., and Sugimoto, W.: Synthesis of electro-deposited ordered mesoporous RuO x using lyotropic liquid crystal and application toward micro-supercapacitors. J. Power Sources 227, 153 (2013). and references therein. Google Scholar
Gupta, S., van Meveren, M., and Jasinski, J.: Investigating electrochemical properties and interfacial processes of manganese oxides/graphene hybrids as high-performance supercapacitor electrodes. Int. J. Electrochem. Sci. 10, 10272 (2015). and references therein. Google Scholar
Gupta, S. and Carrizosa, S.B.: Graphene–inorganic hybrids with cobalt oxide polymorphs for electrochemical energy systems and electrocatalysis: Synthesis, processing and properties. J. Electron. Mater. 44, 4492 (2015). and references therein. CrossRefGoogle Scholar
Ren, Z., Li, J., Ren, Y., Wang, S., Liu, Y., and Yu, J.: Large-scale synthesis of hybrid metal oxides through metal redox mechanism for high-performance pseudocapacitors. Sci. Rep. 6, 20021 (2016). and references therein. Google Scholar
Gupta, S., van Meveren, M., and Jasinski, J.: Graphene-based hybrids with manganese oxide polymorphs as tailored interfaces for electrochemical energy Storage: Synthesis, processing, and properties. J. Electron. Mater. 44, 62 (2015).Google Scholar
Jing, M., Yang, Y., Zhu, Y., Hou, H., Wu, Z., and Ji, X.: An asymmetric ultracapacitors utilizing α-Co(OH)2/Co3O4 flakes assisted by electrochemically alternating voltage. Electrochim. Acta 174, 51 (2015).Google Scholar
Dai, L.: Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 46, 31 (2012).Google Scholar
Dong, X-C., Xu, H., Wang, X-W., Huang, Y-X., Chan-Park, M.B., Zhang, H., Wang, L-H., Huang, W., and Chen, P.: 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206 (2012). and references therein. Google Scholar
Huang, X., Qi, X.Y., and Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41, 666 (2012). and references therein. Google Scholar
Conway, B.E., Bliss, V., and Wojtowicz, J.: The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources, 66, 1 (1997).Google Scholar
Lee, T., Yun, T., Park, B., Sharma, B., Song, H-K., and Kim, B-S.: Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: Importance of establishing intimate electronic contact through nanoscale blending. J. Mater. Chem. 22, 21092 (2012).CrossRefGoogle Scholar
Gao, X., Jang, J., and Nagase, S.: Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114, 832 (2010).Google Scholar
Deng, K., Lia, C., Qiua, X., Zhoub, J., and Hou, Z.: Synthesis of cobalt hexacyanoferrate decorated graphene oxide/carbon nanotubes-COOH hybrid and their application for sensitive detection of hydrazine. Electrochim. Acta 174, 1096 (2015).Google Scholar
Wang, X., Dong, X., Wen, Y., Li, C., Xiong, Q., and Chen, P.: A graphene–cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets. Chem. Commun. 48, 6490 (2012).Google Scholar
Toupin, M., Brousse, T., and Belanger, D.: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184 (2004).Google Scholar
Shim, H-W., Lim, A.H., Kim, J.C., Jang, E., Seo, S.D., Lee, G.H., Kim, T.D., and Kim, D.W.: Scalable one-pot bacteria-templating synthesis route toward hierarchical, porous-Co3O4 superstructures for supercapacitor electrodes. Sci. Rep. 3, 2325 (2013).CrossRefGoogle ScholarPubMed
Meng, W., Chen, W., Zhao, L., Huang, Y., Zhu, M., Huang, Y., Fu, Y., Geng, F., Yu, J., Chen, X., and Zhi, C.: Porous Fe3O4/carbon composite electrode material prepared from metal–organic framework template and effect of temperature on its capacitance. Nano Energy 8, 133 (2014).CrossRefGoogle Scholar
Ghosh, A., Ra, E.J., Jin, M., Jeong, H-K., Kim, T.H., Biswas, C., and Lee, Y.H.: High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper. Adv. Funct. Mater. 21, 2541 (2011).Google Scholar
Zhao, D., Yang, Z., Zhang, L., Feng, X., and Zhang, Y.: Electrodeposited manganese oxide on nickel foam–supported carbon nanotubes for electrode of supercapacitors. Electrochem. Solid-State Lett. 14, A93 (2011).Google Scholar
Li, J., Zhang, L.L., Ji, H., Li, Y., Zhao, X., Bai, X., Fan, X., Zhang, F., and Ruoff, R.S.: Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237 (2013).Google Scholar
Lin, T-W., Dai, C-S., and Huang, K-C.: High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Sci. Rep. 4, 7274 (2014).CrossRefGoogle ScholarPubMed
Chen, H., Hu, L., Chen, M., Yan, Y., and Wu, L.: Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 24, 934 (2014).Google Scholar
Zhao, Y., Zhang, X., He, J., Zhang, L., Xia, M., and Gao, F.: Morphology controlled synthesis of nickel cobalt oxide for supercapacitor application with enhanced cycling stability. Electrochim. Acta 174, 51 (2015).Google Scholar
Zhang, Y., Zhang, L., and Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329 (2013). and references therein. CrossRefGoogle ScholarPubMed
Hummers, W.S. and Offman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).Google Scholar
Park, S., An, J., Potts, R.J., Velamakanni, A., Murali, S., and Ruoff, R.S.: Hydrazine-reduction of graphite- and graphene oxide. Carbon 49, 3019 (2011).Google Scholar
Eda, G. and Chowalla, M.: Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392 (2010).Google Scholar
Viinikanoja, A., Wang, Z., Kauppila, J., and Kvarnström, C.: Electrochemical reduction of graphene oxide and its in situ spectroelectrochemical characterization. Phys. Chem. Chem. Phys. 14, 14003 (2012).Google Scholar
Sun, Y., Hu, X., Luo, W., and Huang, Y.: Ultrathin CoO/graphene hybrid nanosheets: A highly stable anode material for lithium-ion batteries. J. Phys. Chem. C 116, 20794 (2012). and references therein. CrossRefGoogle Scholar
Guo, S., Zhang, S., Wu, L., and Sun, S.: Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen. Angew. Chem. Int. Ed. 51, 11770 (2012).Google Scholar
Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J.Z., Zhou, J., Wang, J., Reiger, T., Wei, F., and Dai, H.: An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452 (2013). and references therein. Google Scholar
Wesselowski, W.S. and Wassiliew, K.W.: Zwillingsbildungen bei graphitkristallen. Z. Kristallogr. 89, 494 (1934).Google Scholar
Dovesi, R., Saunders, V.R., Roetti, C., Orlando, R., Zicovich-Wilson, C.M., Pascale, F., Civalleri, B., Doll, K., Harrison, N.M., Bush, I.J., D’Arco, P., and Llunell, M.: CRYSTAL09. Available at http://www.crystal.unito.it (accessed 12 October 2016).Google Scholar
Ernzerhof, M. and Scuseria, G.E.: Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029 (1999).Google Scholar
Adamo, C. and Barone, V.: Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158 (1999).CrossRefGoogle Scholar
Peintinger, M.F., Oliveira, D.V., and Bredow, T.: Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 34, 451 (2013).Google Scholar
Weigend, F. and Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).Google Scholar
Weigend, F., Häser, M., Patzelt, H., and Ahlrichs, R.: I-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 294, 143 (1998).CrossRefGoogle Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).Google Scholar
Gilat, G. and Raubenheimer, L.J.: Accurate numerical method for calculating frequency-distribution functions in solids. Phys. Rev. 144, 390 (1966).Google Scholar
Gilat, G.: Analysis of methods for calculating spectral properties in solids. J. Comput. Phys. 10, 432 (1972).Google Scholar
Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Mach. 12, 547 (1965).Google Scholar
Kokalj, A.: Computer graphics and graphical user interfaces as tools and simulations of matter at the atomic scale. Comp. Mater. Sci. 28, 155 (2003). Code available at: http://www.xcrysden.org (accessed 11 October 2016).CrossRefGoogle Scholar
He, T., Chen, D.R., Jiao, X.L., and Wang, Y.L.: Co3O-nanoboxes: Surfactant-templated fabrication and microstructure characterization. Adv. Mater. 18, 1078 (2006).Google Scholar
Xia, X.H., Tu, J.P., Zhang, Y.Q., Mai, Y.J., Wang, X.L., Gu, C.D., and Zhao, X.B.: Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv. 2, 1835 (2012).Google Scholar
Liu, X.H., Yi, R., Wang, Y.T., Qiu, G.Z., Zhang, N., and Li, X.G.: Highly ordered snowflake like metallic cobalt microcrystals. J. Phys. Chem. C 111, 163 (2007).CrossRefGoogle Scholar
Gunawardena, G.A., Hills, G.J., Montenegro, I., and Scharifker, B.R.: Electrochemical nucleation: Part I. General considerations. J. Electroanal. Chem. 138, 225 (1982).Google Scholar
Scharifker, B. and Hills, G.: Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 28, 879 (1983).CrossRefGoogle Scholar
Palomar-Pardave, M., Scharifker, B.R., Arce, E.M., and Romero-Romo, M.: Nucleation and diffusion-controlled growth of electroactive centers: Reduction of protons during cobalt electrodeposition. Electrochim. Acta 50, 4736 (2005).Google Scholar
Yang, J., Liu, H., Martens, W.N., and Frost, R.L.: Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 114, 111 (2010).Google Scholar
Gupta, S. and Saxena, A.: Nanocarbon materials: Probing the curvature and topology effects using phonon spectra. J. Raman Spectrosc. 40, 1127 (2009).Google Scholar
Ferrari, A.C. and Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013).Google Scholar
Tang, X.F., Li, J.H., and Hao, J.M.: Synthesis and characterization of spinel Co3O4 octahedra enclosed by the {1 1 1} facets. Mater. Res. Bull. 43, 2912 (2008).Google Scholar
Sun, Y., Lv, P., Yang, J-Y., He, L., Nie, J-C., Liu, X., and Li, Y.: Ultrathin Co3O4 nanowires with high catalytic oxidation of CO. Chem. Commun. 47, 11279 (2011).Google Scholar
Chaikittisilp, W., Torad, N.L., Li, C., Imura, M., Suzuki, N., Ishihara, S., Ariga, K., and Yamaguchi, Y.: Synthesis of nanoporous carbon–cobalt-oxide hybrid electrocatalysts by thermal conversion of metal–organic frameworks. Chem. Eur. J. 20, 4217 (2014).Google Scholar
Kötz, R. and Carlen, M.: Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483 (2000).Google Scholar
Gupta, S. and Price, C.: Investigating graphene/conducting polymer hybrid layered composites as pseudocapacitors: Interplay of heterogeneous electron transfer, electric double layers and mechanical stability. Composites, Part B 105, 46 (2016).CrossRefGoogle Scholar
Chen, S., Zhu, J.W., Wu, X.D., Han, Q.F., and Wang, X.: Graphene oxide–MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822 (2010). and references therein. Google Scholar
Wu, M.S., Lin, Y.P., Lin, C.H., and Lee, J.T.: Formation of nano-scaled crevices and spacers in NiO-attached graphene oxide nanosheets for supercapacitors. J. Mater. Chem. 22, 2442 (2012).CrossRefGoogle Scholar
Gupta, S., McDonald, B., Carrizosa, S.B., and Price, C.: Microstructure, residual stress, and intermolecular force distribution maps of graphene/polymer hybrid composites: Nanoscale morphology-promoted synergistic effects. Composites, Part B 92, 175 (2016).Google Scholar
Celzard, A., Collas, F., Marêché, J.F., Furdin, G., and Rey, I.: Porous electrodes-based double-layer supercapacitors: Pore structure versus series resistance. J. Power Sources 108, 153 (2002).Google Scholar
Hirschorn, B., Orazem, M.E., Tribollet, B., Vivier, V., Frateur, I., and Musiani, M.: Constant-phase-element behavior caused by resistivity distributions in films I. Theory. J. Electrochem. Soc. 157, C452 (2010).Google Scholar
Orazem, M.E. and Tribollet, B.: Electrochemical Impedance Spectroscopy (John Wiley & Sons, Hoboken, New Jersey, USA, 2008).Google Scholar
Jorcin, J-B., Orazem, M.E., Pébère, N., and Tribollet, B.: CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 51, 1473 (2006).CrossRefGoogle Scholar
Gupta, S., Aberg, B., Carrizosa, S.B., and Dimakis, N.: Vanadium pentoxide nanobelt-reduced graphene oxide nanosheet composites as high-performance pseudocapacitive electrodes: AC impedance spectroscopy data modeling and theoretical calculations. Materials 9, 615 (2016).Google Scholar
Lu, Q. and Zhou, Y.: Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitance properties. J. Power Sources 196, 4088 (2011).Google Scholar
Tüken, T., Yazici, B., and Erbil, M.: A new multilayer coating for mild steel protection. Prog. Org. Coat. 50, 115 (2004).Google Scholar
Taberna, P.L., Simon, P., and Fauvarque, J.F.: Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J. Electrochem. Soc. 150, A292 (2003).Google Scholar
Ding, Y., Wang, Y., Su, L., Bellagamba, M., Zhang, H., and Lei, Y.: Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens. Bioelectron. 26, 542 (2010).Google Scholar
Yang, Y., Yi, C., Luo, J., Liu, R., Liu, J., Jiang, J., and Liu, X.: Glucose sensors based on electrodeposition of molecularly imprinted polymeric micelles: A novel strategy for MIP sensors. Biosens. Bioelectron. 26, 2607 (2011).Google Scholar
Fogler, H.S.: Elements of Chemical Reaction Engineering, 4th ed. (Prentice Hall PTR, USA, 2005).Google Scholar
Xiong, Z., Si, Y., Li, M., and Liu, X.: Preparation and performance of a non-precious metal catalyst CoMe/C for oxygen reduction reaction from modified carbon black using melamine as nitrogen source. Int. J. Electrochem. Sci. 9, 7736 (2014).Google Scholar
Liu, S., Wang, Z., Wang, F., Yu, B., and Zhang, T.: High surface area mesoporous CuO: A high-performance electrocatalyst for non-enzymatic glucose biosensing. RSC Adv. 4, 33327 (2014).Google Scholar
Martin, R.M.: Electronic Structure: Basic Theory, Practical Methods (Cambridge University Press, Cambridge, England, 2004).Google Scholar
Supplementary material: File

Gupta supplementary material

Gupta supplementary material 1

Download Gupta supplementary material(File)
File 5 MB