Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T12:40:17.406Z Has data issue: false hasContentIssue false

Grain growth of titania to submillimeter sizes using water vapor-assisted sintering

Published online by Cambridge University Press:  02 October 2018

Takahiro Kozawa*
Affiliation:
Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047, Japan; and Research Laboratory of Hydrothermal Chemistry, Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan
Kazumichi Yanagisawa
Affiliation:
Research Laboratory of Hydrothermal Chemistry, Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Pressureless sintering is a simple and traditional processing method for producing dense ceramics by heating at a high temperature. The introduction of water vapor into this atmosphere can decrease the sintering temperature and accelerate grain growth. In this work, we report water vapor-assisted sintering of submicrometer titania (TiO2) powder. Dense TiO2 pellets with a relative density over 99% were obtained in 0.1 MPa of water vapor at a lower temperature than in air. The submicrometer particles (∼0.5 µm) grew to an average size of 181 µm after sintering at 1400 °C in water vapor, whereas the particle size obtained by sintering in air was 51 µm. Furthermore, we verified the incorporation of oxygen from water vapor into TiO2 by using isotopically labeled water (H218O). Water vapor-assisted sintering can potentially lead to the production of single crystal-like ceramics by a pressureless route and without any additives.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

MacIntire, W.H. and Stansel, T.B.: Steam catalysis in calcinations of dolomite and limestone fines. Ind. Eng. Chem. 45, 15481555 (1953).CrossRefGoogle Scholar
Wang, Y. and Thomson, W.J.: The effects of steam and carbon dioxide on calcite decomposition using dynamic X-ray diffraction. Chem. Eng. Sci. 50, 13731382 (1995).CrossRefGoogle Scholar
Kozawa, T.: Preparation of macroporous Mn3O4 microspheres via thermal decomposition in water vapor. ChemistrySelect 3, 14191423 (2018).CrossRefGoogle Scholar
Wagstaff, F.E. and Richards, K.J.: Kinetics of crystallization of stoichiometric SiO2 glass in H2O atmospheres. J. Am. Ceram. Soc. 49, 118121 (1966).CrossRefGoogle Scholar
Hrabe, Z., Komarneni, S., Pach, L., and Roy, R.: The influence of water vapor on thermal transformations of boehmite. J. Mater. Res. 7, 444449 (1992).CrossRefGoogle Scholar
Bagwell, R.B. and Messing, G.L.: Effect of seeding and water vapor on the nucleation and growth of α-Al2O3 from γ-Al2O3. J. Am. Ceram. Soc. 82, 825832 (1999).CrossRefGoogle Scholar
Tatsuoka, T. and Koga, N.: Effect of atmospheric water vapor on the thermally induced crystallization in zirconia gel. J. Am. Ceram. Soc. 95, 557564 (2012).CrossRefGoogle Scholar
Hayashi, S., Ishizu, K., Kikuchi, S., Okada, K., and Otsuka, N.: Effect of vapor atmosphere on the formation reaction of MSiO3 (M = Mg, Ca, Sr, and Ba). J. Eur. Ceram. Soc. 15, 521526 (1995).CrossRefGoogle Scholar
Ubaldini, A., Buscaglia, V., Uliana, C., Costa, G., and Ferretti, M.: Kinetics and mechanism of formation of barium zirconate from barium carbonate and zirconia powders. J. Am. Ceram. Soc. 86, 1925 (2003).CrossRefGoogle Scholar
Kozawa, T., Onda, A., and Yanagisawa, K.: Accelerated formation of β-dicalcium silicate by solid-state reaction in water vapor atmosphere. Chem. Lett. 38, 476477 (2009).CrossRefGoogle Scholar
Kozawa, T., Yanagisawa, K., Yoshida, A., Onda, A., and Suzuki, Y.: Preparation of β-CaSiO3 powder by water vapor-assisted solid-state reaction. J. Ceram. Soc. Jpn. 121, 103105 (2013).CrossRefGoogle Scholar
Kozawa, T., Onda, A., and Yanagisawa, K.: Accelerated formation of barium titanate by solid-state reaction in water vapour atmosphere. J. Eur. Ceram. Soc. 29, 32593264 (2009).CrossRefGoogle Scholar
Kozawa, T., Onda, A., and Yanagisawa, K.: Preparation of alkaline-earth titanates by accelerated solid-state reaction in water vapor atmosphere. J. Eur. Ceram. Soc. 30, 34353443 (2010).CrossRefGoogle Scholar
Kozawa, T., Yanagisawa, K., and Suzuki, Y.: Water vapor-assisted solid-state reaction for the synthesis of nanocrystalline BaZrO3 powder. J. Ceram. Soc. Jpn. 121, 308312 (2013).CrossRefGoogle Scholar
Kozawa, T., Yanagisawa, K., Murakami, T., and Naito, M.: Growth behavior of LiMn2O4 particles formed by solid-state reactions in air and water vapor. J. Solid State Chem. 243, 241246 (2016).CrossRefGoogle Scholar
Kozawa, T., Hirobe, D., Uehara, K., and Naito, M.: Low-temperature synthesis of LiNi0.5Mn1.5O4 grains using a water vapor-assisted solid-state reaction. J. Solid State Chem. 263, 9499 (2018).CrossRefGoogle Scholar
Anderson, P.J. and Morgan, P.L.: Effects of water vapour on sintering of MgO. Trans. Faraday Soc. 60, 930937 (1964).CrossRefGoogle Scholar
Eastman, P.F. and Culter, I.B.: Effect of water vapor on initial sintering of magnesia. J. Am. Ceram. Soc. 49, 526530 (1966).CrossRefGoogle Scholar
Petersen, R.O. and Culter, I.B.: Effects of water vapor on the initial sintering of calcia. J. Am. Ceram. Soc. 51, 2122 (1968).CrossRefGoogle Scholar
Ito, T., Fujita, M., Watanabe, M., and Tokuda, T.: The initial sintering of alkaline earth oxides in water vapor and hydrogen gas. Bull. Chem. Soc. Jpn. 54, 24122419 (1981).CrossRefGoogle Scholar
MacKenzie, K.J.D.: The calcination of titania. Ⅵ. The effect of reaction atmosphere and electric fields on the anatase-rutile transformation. Trans. J. Br. Ceram. Soc. 74, 121125 (1975).Google Scholar
Hébrard, J-L., Nortier, P., Pijolat, M., and Soustelle, M.: Initial sintering of submicrometer titania anatase powder. J. Am. Ceram. Soc. 73, 7984 (1990).CrossRefGoogle Scholar
Mazaheri, M., Razavi Hesabi, Z., and Sadrnezhaad, S.K.: Two-step sintering of titania nanoceramics assisted by anatase-to-rutile phase transformation. Scr. Mater. 59, 139142 (2008).CrossRefGoogle Scholar
Mendelson, M.I.: Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc. 52, 443446 (1969).CrossRefGoogle Scholar
Rigo, S., Rochet, F., Agius, B., and Straboni, A.: An 18O study of cooperative diffusion and chemical reaction during thermal treatments of silica films in water vapor. J. Electrochem. Soc. 129, 867876 (1982).CrossRefGoogle Scholar
Duong, T., Limarga, A.M., and Clarke, D.R.: Diffusion of water species in yttria-stabilized zirconia. J. Am. Ceram. Soc. 92, 27312737 (2009).CrossRefGoogle Scholar
Angle, J.P., Morgan, P.E.D., and Mecartney, M.L.: Water vapor-enhanced diffusion in alumina. J. Am. Ceram. Soc. 96, 33723374 (2009).CrossRefGoogle Scholar
Yanagisawa, K. and Ovenstone, J.: Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature. J. Phys. Chem. B 103, 77817787 (1999).CrossRefGoogle Scholar
Shao, L., Zhang, L., Chen, M., Lu, H., and Zhou, M.: Reactions of titanium oxides with water molecules. A matrix isolation FTIR and density functional study. Chem. Phys. Lett. 343, 178184 (2001).CrossRefGoogle Scholar
Nguyen, Q.N., Bauschlicher, C.W. Jr., Myers, D.L., Jacobson, N.S., and Opila, E.J.: Computational and experimental study of thermodynamics of the reaction of titania and water at high temperatures. J. Phys. Chem. A 121, 95089517 (2017).CrossRefGoogle Scholar
Jacobson, N., Myers, D., Opila, E., and Copland, E.: Interactions of water vapor with oxides at elevated temperatures. J. Phys. Chem. Solids 66, 471478 (2005).CrossRefGoogle Scholar