Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T00:26:01.957Z Has data issue: false hasContentIssue false

Grain boundary in textured YBa2Cu3O7−δ superconductor

Published online by Cambridge University Press:  31 January 2011

Yimei Zhu
Affiliation:
Division of Materials Science, Brookhaven National Laboratory, Upton, New York 11973
H. Zhang
Affiliation:
Department of Materials Science, State University of New York–Stony Brook, Stony Brook, New York 11794
H. Wang
Affiliation:
Department of Materials Science, State University of New York–Stony Brook, Stony Brook, New York 11794
M. Suenaga
Affiliation:
Division of Materials Science, Brookhaven National Laboratory, Upton, New York 11973
Get access

Abstract

The misorientations of over 200 pairs of adjacent grains separated by grain boundaries in textured YBa2Cu3O7−δ were measured using a transmission electron microscopy technique. The results indicate that there exist discrete preferred rotation angles and rotation axes. The existence of low-energy boundaries is inferred. The results are analyzed based on the Constrained Coincidence Site Lattice (CCSL) and O2-lattice theories and imply the applicability of such theories for the case of large-angle grain boundaries in a complex crystal structure such as YBa2Cu3O7−δ. The results of analysis also show that some boundaries are likely to be reduced in oxygen near the boundary to satisfy the constraint of the coincidence site lattice.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chaudhari, P., Mannhart, J., Dimos, D., Tsuei, C. C., Chi, J., Oprysko, M. M., and Scheuermann, M., Phys. Rev. Lett. 60, 1653 (1988).CrossRefGoogle Scholar
2.Dimos, D., Chaudhari, P., Mannhart, J., and Legoues, F. K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
3.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
4.Hwang, D. M., Ravi, T. S., Ramesh, R., Chain, Siu-Wai, Chen, C. Y., Nazar, L., Wu, X. D., Inam, A., and Venkatesan, T., Appl. Phys. Lett. 57, 1690 (1990).CrossRefGoogle Scholar
5.Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
6.Wang, H., Herman, H., Suenaga, M., Wiesmann, H. J., Zhu, Y., Xu, Y., and Sabatini, R. L., Appl. Phys. Lett. 57, 2495 (1990).CrossRefGoogle Scholar
7.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
8.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
9.Yi, Z., Ashworth, S., Beduz, C., and Scurlock, R. G., IEEE Trans. Magn. MAG 27, 1506 (1991).CrossRefGoogle Scholar
10.Orehostsky, J., Wiesmann, H., Moodenbaugh, A. R., Suenaga, M., Wang, H. G., and Herman, H., IEEE Trans. Magn. MAG 27, 914 (1991).CrossRefGoogle Scholar
11.Babcock, S. E., Cai, X. Y., Kaiser, D. L., and Larbalestier, D. C., Nature 347, 167 (1990).CrossRefGoogle Scholar
12.Babcock, S. E., Kelly, T. F., Lee, P. J., Seuntjens, J. M., Vanier, L. A. La, and Larbalestier, D. C., Physica C 152, 25 (1988).CrossRefGoogle Scholar
13.Pennycook, S. J. and Boatner, L. A., Nature 336 565 (1988).CrossRefGoogle Scholar
14.Babcock, S. E. and Larbalestier, D. C., Appl. Phys. Lett. 55, 393 (1989).CrossRefGoogle Scholar
15.Verhoeven, J. D., Bevolo, A. J., McCallum, R. W., Gibson, E. D., and Noack, M. A., Appl. Phys. Lett. 55, 745 (1988).CrossRefGoogle Scholar
16.Babcock, S. E. and Larbalestier, D. C., J. Mater. Res. 5, 919 (1990).CrossRefGoogle Scholar
17.Chan, S-W., Hwang, D. M., Ramesh, R., Sampere, S. M., Nazar, L., Gerhardt, R., and Pruna, P., in AIP Conf. Proc. No. 200: High Tc Superconducting Thin Films, edited by Stockbaur, R. (American Institute of Physics, New York, 1990), p. 172.CrossRefGoogle Scholar
18.Chisholm, M. F. and Smith, D. A., Philos. Mag. A 59, 181 (1989).CrossRefGoogle Scholar
19.Ravi, T. S., Hwang, D. M., Ramesh, R., Chan, Siu Wai, Nazar, L., Chen, C. Y., Inam, A., and Venkatesan, T., Phys. Rev. B 42, 10141 (1990).CrossRefGoogle Scholar
20.Doyle, P. A. and Turner, P. S., Acta Cryst. A 24, 390 (1968).CrossRefGoogle Scholar
21.Young, C. T., Steele, J. H., and Lytton, J. L., Metall. Trans. 4, 2081 (1973).CrossRefGoogle Scholar
22.Chen, F. R. and King, A. H., J. Electron Microsc. Technol. 6, 55 (1987).CrossRefGoogle Scholar
23.Bollmann, W., in “Crystal Lattices, Interfaces and Matrices,” published by author, 1982.Google Scholar
24.Smith, D. A., Chisholm, M. F., and Clabes, J., Appl. Phys. Lett. 53, 2344 (1988).CrossRefGoogle Scholar
25.Bruggemann, G. A., Bishop, G. H., and Hartt, W. H., in The Nature and Behavior of Grain Boundaries, edited by Hu, H. (Plenum Press, New York, 1972), p. 83.CrossRefGoogle Scholar
26.Singh, A., Chandrasekhar, N., and King, A. H., Acta Cryst. B 46, 117 (1990).CrossRefGoogle Scholar
27.Grimmer, H. and Warrington, D. H., Acta Cryst. A 43, 232 (1987).CrossRefGoogle Scholar
28.Brandon, D. G., Acta Metall. 14, 1479 (1956).CrossRefGoogle Scholar
29.Kroeger, D. M., Choudhury, A., Brynestad, J., Williams, R. K., Padgett, R. A., and Coghlan, W. A., J. Appl. Phys. 64, 331 (1988).CrossRefGoogle Scholar
30.Verhoeven, J. D., Bevolo, A. J., McCallum, R. W., Gibson, E. D., and Noack, M. A., Appl. Phys. Lett. 52, 745 (1988).CrossRefGoogle Scholar
31. See, for example, Grain-boundary structure and kinetics (ASM, Metals Park, OH, 1980), Proc. of ASM Materials Science Seminar, 1516, Sept. 1979, Milwaukee, WI.Google Scholar
32.Merkel, K. L. and Wolf, D., MRS Bulletin, 42 (September 1990).CrossRefGoogle Scholar
33.Natarajan, Chandrasekhar, Dissertation, State University of New York-Stony Brook (1990).Google Scholar