Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T20:52:20.689Z Has data issue: false hasContentIssue false

Grain boundary faceting in YBa2Cu3O7–x bicrystal thin films on SrTiO3 substrates

Published online by Cambridge University Press:  31 January 2011

Qiang Jin
Affiliation:
Department of Applied Physics & Applied Mathematics, Columbia University, New York, New York 10027
Siu-Wai Chan*
Affiliation:
Department of Applied Physics & Applied Mathematics, Columbia University, New York, New York 10027
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The structure of [001] tilt boundaries in YBa2Cu3O7–x (YBCO) thin films deposited on [001] tilt SrTiO3 (STO) bicrystal substrates has been characterized by transmission electron microscopy (TEM). These boundaries are (100)/(210), (310)/(510), (410)/(310), (510)/(210), (210)/(410), and (210)/(310), with corresponding misorientation angles of 26°, 29°, 32°, 37°, 40°, and 44°. It was found that the YBCO film boundaries were meandering along the relatively straight substrate boundaries. High-resolution lattice images indicated that the microscopic meandering of the film boundary essentially consisted of many straight segments of facets at the atomic scale. On the basis of the observed facets, three competing factors controlling the formation of facets are discussed. First, the boundary plane is defined by Miller indices (hk0) in both crystals with sufficiently small h, k (i.e., h, k ≤ 5) and sufficiently large effective interplanar spacing (i.e., deff > 0.06 nm). Second, the closure failure defined by the difference between the local misorientation from the design misorientation is small, i.e., less than 2°. Third, the deviation of a local facet plane is observed to be less than 30° from the design boundary plane. Higher values of deffs are observed to give tolerance to higher deviation angles.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
2.Ivanov, Z.G., Nilson, P.Å., Winkler, D., Alarco, J.A., Claeson, T., Stepantzov, E.A., and Tzalenchuk, A. Ya., Appl. Phys. Lett. 59, 3030 (1991).CrossRefGoogle Scholar
3.Amrein, T., Schultz, L., Kabius, B., and Urban, K., Phys. Rev. B 51, 6792 (1995).CrossRefGoogle Scholar
4.Chan, S-W., Hwang, D.M., Ramesh, R., Sampere, S.M., Nazar, L., Gerhardt, R., and Pruna, P., in High Tc Superconducting Thin Films: Processing, Characterization and Applications, edited by Stockbaur, R. et al. , AIP Proceedings, No. 200 (AIP, New York, 1990), p. 172.Google Scholar
5.Babcock, S.E., Cai, X.Y., Kaiser, D.L., and Larbalestier, D.C., Nature (London) 167, 347 (1990).Google Scholar
6.Larbalestier, D.C., Babcock, S.E., Cai, X.Y., Field, M.B., Gao, Y., Heinig, N.F., Kaiser, D.L., Merkle, K., Williams, L.K., and Zhang, N., Physica C 185–189, 315 (1991).CrossRefGoogle Scholar
7.Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F.K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
8.Heinig, N.F., Redwing, R.D., Tsu, I.F., Gurevich, A., Nordman, J.E., Babcock, S.E., and Larbalestier, D.C., Appl. Phys. Lett. 69, 577 (1996).CrossRefGoogle Scholar
9.Chan, S-W., Phys. Chem. Solids 55, 1415 (1994).CrossRefGoogle Scholar
10.Browning, N.D., Buban, J.P., Nellist, P.D., Norton, D.P., Chisholm, M.F., and Pennycook, S.J., Physica C 294, 183 (1998).CrossRefGoogle Scholar
11.Hilgenkamp, H. and Mannhart, J., Appl. Phys. A 64, 553 (1997).CrossRefGoogle Scholar
12.Tafuri, F., Carillo, F., Lombardi, F., Granozio, F. Miletto, Racci, F., Uccio, U. Scotti di, Barone, A., Testa, G., Sarnelli, E., and Kirtley, J.R., Phys. Rev. B 62, 14431 (2000).CrossRefGoogle Scholar
13.Tsai, J.W.H., Chan, S-W., Kirtley, J.R., Tidrow, S.C., and Jiang, Q., IEEE Trans. Appl. Supercond. 11, 3880 (2001).CrossRefGoogle Scholar
14.Hilgenkamp, H., Mannhart, J., and Mayer, B., Phys. Rev. B 21, 14586 (1996).CrossRefGoogle Scholar
15.Tsuei, C.C. and Kirtley, J.R., J. Phys. Chem. Solids 59, 2045 (1998).CrossRefGoogle Scholar
16.Chan, S-W., Kussmaul, A., Hellman, E.S., and Hartford, E.H. Jr., J. Mater. Res. 13, 1774 (1998).CrossRefGoogle Scholar
17.Alarco, J.A., Olsson, E., Ivanov, Z.G., Nilsson, P.A., Winkler, D., Stepantsov, E.A., and Tzalenchuk, A. Ya., Ultramicroscopy 51, 239 (1993).CrossRefGoogle Scholar
18.Alarco, J.A., Olsson, E., Ivanov, Z.G., Winkler, D., Stepantsov, E.A., Lebedev, O.I., Vasiliev, A.L., Tzalenchuk, A. Ya., and Kiselev, N.A., Physica C 247, 263 (1995).CrossRefGoogle Scholar
19.Træholt, C., Wen, J.G., Zandbergen, H.W., Shen, Y., and Hilgenkamp, J.W.M., Physica C 230, 425 (1994).CrossRefGoogle Scholar
20.Ayzche, J., Thorel, A., Lesueur, J., and Dahmen, U., J. Appl. Phys. 84, 4921 (1998).Google Scholar
21.Seo, J.W., Kabius, B., Dahne, U., Scholen, A., and Urban, K., Physica C 245, 25 (1995).CrossRefGoogle Scholar
22.Kabius, B., Seo, J.W., Amrein, T., Dahne, U., Scholen, A., Siegel, M., Urban, K., and Schultz, L., Physica C 231, 123 (1994).CrossRefGoogle Scholar
23.Tsai, J.W.H., DES Thesis, Columbia University, New York, NY (2000).Google Scholar
24.Jiang, Q.D., Pan, X.Q., and Zegenhagen, J., Phys. Rev. B 56, 6947 (1997).CrossRefGoogle Scholar
25.Vargas, J.L., Zhang, Na, Kaiser, D.L., and Babcock, S.E., Physica C 292, 1 (1997).CrossRefGoogle Scholar
26.Zhu, Y., Zuo, J.M., Moodenbaugh, A.R., and Suenaga, M., Philos. Mag. A 70, 969 (1994).CrossRefGoogle Scholar
27.Wolf, D., J. Phys. 46, C4 (1985).CrossRefGoogle Scholar
28.Cosandey, F., Chan, S-W., and Stadelmann, P., Metall. Trans. A 21, 2299 (1990).CrossRefGoogle Scholar
29.Norton, M.G., Tietz, L.A., Summerfelt, S.R., and Carter, C.B., Appl. Phys. Lett. 55, 2348 (1989).CrossRefGoogle Scholar
30.Chang, C.C., Wu, X.D., Ramesh, R., Xi, X.X., Ravi, T.S., Venkatesan, T., Hwang, D.M., Muenchhausen, R.E., Foltyn, S., and Nogar, N.S., Appl. Phys. Lett. 57, 1814 (1990).CrossRefGoogle Scholar
31.Hawley, M., Raistrick, I.D., Beery, J.G., and Houlton, R.J., Science 251, 1589 (1991).CrossRefGoogle Scholar
32.Sigrist, M. and Rice, T.M., J. Phys. Soc. Jpn. 61, 4283 (1992).CrossRefGoogle Scholar
33.Tsuei, C.C., Kirtley, J.R., Chi, C.C., Yu-Jahnes, , Gupta, A., Shaw, T., Sun, J.Z., and Ketchen, M.B., Phys. Rev. Lett. 73, 593 (1994).CrossRefGoogle Scholar
34.Wollman, D.A., Harlinggen, D.J. Van, Lee, W.C., and Ginsberg, D.M., Phys. Rev. Lett. 74, 797 (1995).CrossRefGoogle Scholar
35.Chan, S-W. and Jin, Q. (manuscript in preparation).Google Scholar