Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T20:56:11.608Z Has data issue: false hasContentIssue false

Glass corrosion in ambient temperature lithium battery headers

Published online by Cambridge University Press:  31 January 2011

Bruce C. Bunker
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Sally C. Douglas
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Rod K. Quinn
Affiliation:
Los Alamos National Laboratories, Los Alamos, New Mexico 87544
Get access

Abstract

During high-temperature storage, glass corrosion in glass-to-metal feedthroughs can limit the lifetimes of lithium batteries designed to operate at ambient temperatures. Ampule tests have been conducted to simulate glass corrosion for Li/So2, Li/SOCl2, and Li/SOCl2 + BrCl batteries. In all lithium battery systems tested, lithium metal has been identified as the source of glass corrosion. On the basis of thermodynamic and kinetic stability, glass compositions have been developed that minimize the corrosion problem in all lithium battery systems tested.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bro, P. and Levy, S. C., Lithium Battery Technology, edited by Venkatasetty, H. V. (Wiley, New York, 1984), p. 78.Google Scholar
2Bunker, B. C., Leedecke, C. J., Levy, S. C., and Crafts, C. C., in the 8th Power Sources Symposium, edited by Thomson, J. (Academic, New York, 1981).Google Scholar
3Douglas, S. C., Bunker, B. C., Crafts, C. C., and Quinn, R. K., in Sandia National Laboratories Report No. SAND83-23O1 (Sandia National Laboratories, Albuquerque, NM, 1983), available from the National Technical Information Service (NTIS).Google Scholar
4Miller, J. D. and Burchett, S. N., in Sandia National Laboratories Report No. SAND82-OO57 (Sandia National Laboratories, Albuquerque, NM, 1982), available from the National Technical Information Service (NTIS).Google Scholar
5Oikawa, E. and Kambara, S., Chem. Soc. Jpn. B 37, 1849 (1964).CrossRefGoogle Scholar
6Burrow, B. J., Nebesny, K. W., Armstrong, N. R., Quinn, R. K., and Zurawski, D. E., J. Electrochem. Soc. 128, 1919 (1981).CrossRefGoogle Scholar
7Dey, A. N., J. Power Sources 5, 57 (1980).CrossRefGoogle Scholar
8Istephanous, N. S., Fester, K., Merritt, D. R., Skarstad, P. M., and Untereker, D. F., Electrochem. Soc. Extended Abstracts 84–2, 146 (1984).Google Scholar
9Dey, A. N., J. Electrochem. Soc. 118, 1547 (1971).CrossRefGoogle Scholar
1OSharma, R. A. and Seefurth, R. N., J. Electrochem. Soc. 123, 1763 (1976).Google Scholar
1lKolb, D. M., Przasnyski, M., and Gerischer, H., Electroanal. Chem. Interfacial Electrochem. 54, 25 (1974).CrossRefGoogle Scholar
12Dey, A. N., Thin Solid Films 43, 131 (1977).CrossRefGoogle Scholar
13Rupick, M. W., Pitts, L., and Abraham, K. M., J. Electrochem Soc. 129, 1857 (1982).Google Scholar
14Singh, R. N., J. Am. Ceram. Soc. 59, 112 (1976).CrossRefGoogle Scholar
15Barsoum, M., Velez, M., Tuller, H. L., and Uhlmann, D. R., Mater. Sci. Eng. 81, 567 (1981).Google Scholar
16Salmi, D. R. and Bunker, B. C., Sandia National Laboratories Report No. SAND83-O785 (Sandia National Laboratories, Albuquerque, NM, 1983), available from the National Technical Information Service (NTIS).Google Scholar
17Elyard, C. A. and Rawson, H., Advances in Glass Technology, Part 1 (Plenum, New York, 1963), pp. 270286.Google Scholar
18Brinker, C. J. and Klein, L. C., Phys. Chem. Glasses 21, 141 (1980).Google Scholar
19Brinker, C. J. and Klein, L. C., Phys. Chem. Glasses 22, 23 (1981).Google Scholar