Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T08:16:00.035Z Has data issue: false hasContentIssue false

Generation and annihilation of antiphase domain boundaries in GaAs on Si grown by molecular beam epitaxy

Published online by Cambridge University Press:  31 January 2011

A. Georgakilas
Affiliation:
Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas (FORTH), P.O. Box 1527, 711 10 Heraklion, Crete, Greece
J. Stoemenos
Affiliation:
Physics Department, Aristotle University of Thessaloniki, 540 06 Thessaloniki, Greece
K. Tsagaraki
Affiliation:
Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas (FORTH), P.O. Box 1527, 711 10 Heraklion, Crete, Greece
Ph. Komninou
Affiliation:
Physics Department, Aristotle University of Thessaloniki, 540 06 Thessaloniki, Greece
N. Flevaris
Affiliation:
Physics Department, Aristotle University of Thessaloniki, 540 06 Thessaloniki, Greece
P. Panayotatos
Affiliation:
Department of Electrical and Computer Engineering, Rutgers University, P.O. Box 909, Piscataway, New Jersey 08855-0909 and Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas (FORTH), P.O. Box 1527, 711 10 Heraklion, Crete, Greece
A. Christou
Affiliation:
CALCE Electronic Packaging Research Center, Microelectronics Devices Laboratory, University of Maryland, College Park, Maryland 20742
Get access

Abstract

A comprehensive investigation of antiphase domain boundaries (APB's) in GaAs-on-Si is presented. A comprehensive experimental approach, based on complementary electron microscopy (TEM and SEM) and chemical etch techniques, is developed and used in the study of the structural evolution of APB's on vicinal (001)Si substrates. The question of whether a GaAs selective nucleation or APB annihilation accounts for the absence of APB's in thick GaAs/Si films, grown on substrates misoriented from (001) toward (110), is addressed. APB's are revealed by two different TEM techniques to exist in the first interfacial layers of GaAs/Si even in samples considered to be “APB free”. The APB annihilation mechanism is illustrated in GaAs films grown on substrates misoriented toward (100), either directly, by cross-sectional TEM observations, or indirectly, by combined chemical etch/SEM experiments. In addition, the structural characteristics of APB's and their interaction with other extended crystal defects are clarified by XTEM and TEM observations. Finally, the influence of APB's on GaAs/Si surface morphology and their electrical activity are shown explicitly for the first time.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Heteroepitaxy on Silicon, edited by Fan, J.C. C. and Poate, J. M. (Mater. Res. Soc. Symp. Proc. 67, Pittsburgh, PA, 1986).Google Scholar
2Heteroepitaxy on Silicon II, edited by Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y. (Mater. Res. Soc. Symp. Proc. 91, Pittsburgh, PA, 1987).Google Scholar
3Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988).Google Scholar
4Chand, N., Ren, F., Macrander, A. T., Ziel, J. P. van der, Sergent, A. M., Hull, R., Chu, S. N. G., Chen, Y. K., and Lang, D. V., J. Appl. Phys. 67, 2343 (1990).CrossRefGoogle Scholar
5Kroemer, H., in Heteroepitaxy on Silicon, edited by Fan, J. C. C. and Poate, J. M. (Mater. Res. Soc. Symp. Proc. 67, Pittsburgh, PA, 1986), p. 3.Google Scholar
6Uppal, P.N. and Kroemer, H., J. Appl. Phys. 58, 2195 (1985).CrossRefGoogle Scholar
7Kroemer, H., in Proc. 14th Int. Symp. on Gallium Arsenide and Related Compounds, Heraklion, Greece, Sept. 1987, edited by Christou, A. and Rupprecht, H. S. (Inst. Phys. Conf. Ser., Bristol, United Kingdom, 1988), Vol. 91, p. 27.Google Scholar
8Bobb, L. C., Holloway, H., and Maxwell, K. H., J. Appl. Phys. 37, 4687 (1966).CrossRefGoogle Scholar
9Holt, D. B., J. Phys. Chem. Solids 30, 1297 (1969).CrossRefGoogle Scholar
10Petroff, P.M., J. Vac. Sci. Technol. B 4, 874 (1986).CrossRefGoogle Scholar
11Kawabe, M. and Ueda, T., Jpn. J. Appl. Phys. 25, L285 (1986).CrossRefGoogle Scholar
12Akiyama, M., Kawarada, Y., Ueda, T., Nishi, S., and Kaminishi, K., J. Cryst. Growth 77, 490 (1986).CrossRefGoogle Scholar
13Bringans, R.D., Olmstead, M.A., Ponce, F.A., Biegelsen, D.K., Krusor, B. S., and Yingling, R. D., J. Appl. Phys. 64, 3472 (1988).CrossRefGoogle Scholar
14Okumura, H., Suzuki, Y., Miki, K., Sakamoto, K., Sakamoto, T., Misawa, S., and Yoshida, S., J. Vac. Sci. Technol. B 7, 481 (1989).CrossRefGoogle Scholar
15Kawanami, H., Hatayama, A., Nagai, K., and Hayashi, Y., Jpn. J. Appl. Phys. 26, L173 (1987).CrossRefGoogle Scholar
16Kawabe, M. and Ueda, T., Jpn. J. Appl. Phys. 26, L944 (1987).CrossRefGoogle Scholar
17Pukite, P.R. and Cohen, P.I., Appl. Phys. Lett. 50, 1739 (1987).CrossRefGoogle Scholar
18Mizuguchi, K., Hayafuji, N., Ochi, S., Murotani, T., and Fujikawa, K., J. Cryst. Growth 77, 509 (1986).CrossRefGoogle Scholar
19Noge, H., Kano, H., Kato, T., Hashimoto, M., and Igarashi, I., J. Appl. Phys. 64, 2246 (1988).CrossRefGoogle Scholar
20Fang, S. F., Adomi, K., Iyer, S., Morkoc, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68, R31 (1990); also, R. Fischer, H. Morkoc., D. A. Neumann, H. Zabel, C. Choi, N. Otsuka, M. Longerbone, and L. P. Erickson, J. Appl. Phys. 60, 1640 (1986).Google Scholar
21Lo, Y.H., Wu, M.C., Lee, H., Wang, S., and Liliental-Weber, Z., Appl. Phys. Lett. 52, 1386 (1988).Google Scholar
22Humphreys, T. P., Das, K., Posthill, J. B., Tarn, J. C. L., Jaing, B. L., Wortman, J. J., and Parikh, N. R., Jpn. J. Appl. Phys. 27, 1458 (1988).CrossRefGoogle Scholar
23Posthill, J. B., Tarn, J. C. L., Das, K., Humphreys, T. P., and Parikh, N. R., Appl. Phys. Lett. 53, 1207 (1988).CrossRefGoogle Scholar
24Nauka, K., Reid, G. A., and Liliental-Weber, Z., Appl. Phys. Lett. 56, 376 (1990).CrossRefGoogle Scholar
25Chu, S.N. G., Nakahara, S., Pearton, S.J., Boone, T., and Vernon, S. M., J. Appl. Phys. 64, 2981 (1988).CrossRefGoogle Scholar
26Ueda, O., Soga, T., Jimbo, T., and Umeno, M., Appl. Phys. Lett. 55, 445 (1989).CrossRefGoogle Scholar
27Panayotatos, P., Georgakilas, A., Mourrain, J-L., and Christou, A., in Physical Concepts ofMaterials for Novel Optoelectronic Device Applications I, edited by Razeghi, M. (Proc. SPIE, Bellingham, WA, 1990), Part II, Vol. 1361, p. 1100.Google Scholar
28Georgakilas, A., Panayotatos, P., Stoemenos, J., Mourrain, J-L., and Christou, A., J. Appl. Phys. 71, 2679 (1992).CrossRefGoogle Scholar
29Georgakilas, A., Tsagaraki, K., and Christou, A., Mater. Lett. 10, 525 (1991).CrossRefGoogle Scholar
30Cho, N-H., Cooman, B. C. De, Carter, C. B., Fletcher, R., and Wagner, D. K., Appl. Phys. Lett. 47, 879 (1985).Google Scholar
31Morizane, K., J. Cryst. Growth 38, 249 (1977).CrossRefGoogle Scholar
32Rasmussen, D.R., McKernan, S., and Carter, C. B., Philos. Mag. 63, 1299 (1991).CrossRefGoogle Scholar
33Cheng, T. T., Pirouz, P., and Ernst, F., in Advances in Materials, Processing and Devices in III-V Compound Semiconductors, edited by Sadana, D. K., Eastman, L. F., and Dupuis, R. (Mater. Res. Soc. Symp. Proc. 144, Pittsburgh, PA, 1989).Google Scholar
34Pirouz, P., Ernst, F., and Cheng, T. T., in Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 57.Google Scholar
35Christou, A., Stoemenos, J., Flevaris, N., Komninou, Ph., and Georgakilas, A., J. Appl. Phys. 68, 3298 (1990).CrossRefGoogle Scholar
36Matthews, J. W., in Dislocations in Solids, edited by Nabarro, F. R.N. (North-Holland, Amsterdam, 1979), Vol. 2, Chap. 7.Google Scholar
37Gevers, R., Philos. Mag. 7, 1681 (1962); also, R. Gevers, Phys. Status Solidi 3, 1214 (1963).CrossRefGoogle Scholar
38Balluffi, R. W., Sass, S. L., and Schober, T., Philos. Mag. 26, 585 (1972).CrossRefGoogle Scholar
39Spyridelis, J., Delavignette, P., and Amelinckx, S., Mater. Res. Bull. II, 615 (1967).CrossRefGoogle Scholar
40Griffith, J. E., Kubby, J. A., Wierenga, P. E., and Kochanski, G. P., in Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 27.Google Scholar
41Rocher, A., Charasse, M-N., Bartenlian, B., and Chazelas, J., Colloque de Physique, Colloq. Cl, suppl. au no. 1, tome 51, Cl915 (1989).Google Scholar
42Zhu, J.G., McKernan, S., Carter, C.B., Schaff, W.J., and Eastman, L.F., in Advances in Materials, Processing and Devices in III-V Compound Semiconductors, edited by Sadana, D. K., Eastman, L. F., and Dupuis, R. (Mater. Res. Soc. Symp. Proc. 144, Pittsburgh, PA, 1989), p. 285; also J.G. Zhu and C.B. Carter, Philos. Mag. A 62, 319 (1990).Google Scholar
43Amelinckx, S., in The Direct Observation of Dislocations, Solid State Physics (Academic Press, New York, 1964), p. 308.Google Scholar
44Stoemenos, J., Komninou, Ph., Karakostas, Th., Georgakilas, A., and Christou, A., in Proc. 6th Int. Conf. on Intergranular and Interphase Boundaries in Materials, Thessaloniki, Greece, June 21–26, 1992, edited by Komninou, Ph. and Rocher, A., to be published in Materials Science Forum.Google Scholar
45Gonzalez, Y., Gonzalez, L., and Briones, F., Jpn. J. Appl. Phys. 30, L235 (1991).CrossRefGoogle Scholar
46Freundlich, A., Leycuras, A., Grenet, J. C., and Grattepain, C., Appl. Phys. Lett. 53, 2635 (1988).CrossRefGoogle Scholar