Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T07:06:10.121Z Has data issue: false hasContentIssue false

Gate dielectric reliability and instability in GaN metal-insulator-semiconductor high-electron-mobility transistors for power electronics

Published online by Cambridge University Press:  26 September 2017

Jesús A. del Alamo*
Affiliation:
Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Alex Guo
Affiliation:
Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Shireen Warnock
Affiliation:
Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

GaN field-effect transistors with impressive power switching characteristics have been demonstrated. Preventing their widespread field deployment are reliability and instability concerns. Some emanate from the use of a dielectric in the gate stack. Under typical operation, the gate dielectric comes periodically under intense electric field. This causes trapping and detrapping of electrons and introduces transient shifts in the threshold voltage, a phenomenon known as Bias-Temperature Instability (BTI). A high electric field also results in the formation of defects inside the dielectric. Over time, the defects accumulate and eventually result in the abrupt creation of a conducting path that shorts the dielectric and renders the device inoperable. This process, known as Time-Dependent Dielectric Breakdown (TDDB), often imposes a maximum lifetime for the FET technology. This article presents a methodology for the study of BTI and TDDB in insulated-gate GaN FETs. Our findings paint a picture of BTI and TDDB that in many respects is similar to that of Si transistors but with some unique characteristics. Understanding the physics and developing appropriate lifetime models is essential to enabling the deployment of this important new power electronics technology.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Don W. Shaw

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Morkoc, H.: Nitride Semiconductors and Devices, 1st ed. (Springer-Verlag Berlin Heidelberg, Weinheim, Germany, 1999).CrossRefGoogle Scholar
Nakamura, S.: Nobel lecture: Background story of the invention of efficient blue InGaN light emitting diodes. Rev. Mod. Phys. 87, 1139 (2015).Google Scholar
Asif Khan, M., Skogman, R.A., Van Hove, J.M., Olson, D.T., and Kuznia, J.N.: Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition. Appl. Phys. Lett. 60, 1366 (1992).Google Scholar
Manfra, M.J., Weimann, N.G., Hsu, J.W.P., Pfeiffer, L.N., West, K.W., Syed, S., Stormer, H.L., Pan, W., Lang, D.V., Chu, S.N.G., Kowach, G., Sergent, A.M., Caissie, J., Molvar, K.M., Mahoney, L.J., and Molnar, R.J.: High mobility AlGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy on semi-insulating GaN templates prepared by hydride vapor phase epitaxy. J. Appl. Phys. 92, 338 (2002).CrossRefGoogle Scholar
Asif Khan, M., Bhattarai, A., Kuznia, J.N., and Olson, D.T.: High electron mobility transistor based on a GaN–Al x Ga1−x N heterojunction. Appl. Phys. Lett. 63, 1214 (1993).Google Scholar
Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., and Pribble, W.L.: A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microwave Theory Tech. 60, 1764 (2012).Google Scholar
Lidow, A., Strydom, J., de Rooij, M., and Ma, Y.: GaN Transistors for Efficient Power Conversion, 1st ed. (Power Conversion Publications, El Segundo, California, 2012).Google Scholar
Van Hove, M., Boulay, S., Bahl, S.R., Stoffels, S., Kang, X., Wellekens, D., Geens, K., Delabie, A., and Decoutere, S.: CMOS process-compatible high-power low-leakage AlGaN/GaN MISHEMT on silicon. IEEE Electron Device Lett. 33, 667 (2012).Google Scholar
Then, H.W., Chow, L.A., Dasgupta, S., Gardner, S., Radosavljevic, M., Rao, V.R., Sung, S.H., Yang, G., and Fischer, P.: High-K gate dielectric depletion-mode and enhancement-mode GaN MOS-HEMTs for improved off-state leakage and DIBL for power electronics and RF applications. In IEEE International Electron Devices Meeting (IEEE, Washington D.C., 2015); pp. 1623.Google Scholar
Deboy, G., Treu, M., Haeberlen, O., and Neumayr, D.: Si, SIC and GaN power devices: An unbiased view on key performance indicators. In IEEE International Electron Devices Meeting (IEEE, San Francisco, California 2016); pp. 2022.Google Scholar
Zanoni, E., Meneghini, M., Chini, A., Marcon, D., and Meneghesso, G.: AlGaN/GaN-based HEMTs failure physics and reliability: Mechanisms affecting gate edge and Schottky junction. IEEE Trans. Electron Devices 60, 3119 (2013).Google Scholar
del Alamo, J.A. and Joh, J.: GaN HEMT reliability. Microelectron. Reliab. 49, 1200 (2009).Google Scholar
Marcon, D., Viaene, J., Favia, P., Bender, H., Kang, X., Lenci, S., Stoffels, S., and Decoutere, S.: Reliability of AlGaN/GaN HEMTs: Permanent leakage current increase and output current drop. Microelectron. Reliab. 52, 2188 (2012).Google Scholar
Ohki, T., Kikkawa, T., Inoue, Y., Kanamura, M., Okamoto, N., Makiyama, K., Imanishi, K., Shigematsu, H., Joshin, K., and Hara, N.: Reliability of GaN HEMTs: Current status and future technology. In IEEE International Reliability Physics Symposium (IEEE, Montreal, Canada 2009); pp. 6170.Google Scholar
Zafar, S., Kim, Y., Narayanan, V., Cabral, C., Paruchuri, V., Doris, B., Stathis, J., Callegari, A., and Chudzik, M.: A comparative study of NBTI and PBTI (charge trapping) in SiO2/HfO2 stacks with FUSI, TiN, Re gates. In International Symposium on VLSI Technology (IEEE, Honolulu, Hawaii, 2006); pp. 2325.Google Scholar
Stathis, J.H. and Zafar, S.: The negative bias temperature instability in MOS devices: A review. Microelectron. Reliab. 46, 270 (2006).CrossRefGoogle Scholar
Lagger, P., Ostermaier, C., Pobegen, G., and Pogany, D.: Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs. In IEEE International Electron Devices Meeting (IEEE, San Francisco, California, 2012); pp. 1321.Google Scholar
Svensson, C. and Shumka, A.: Time dependent breakdown in silicon dioxide films. Int. J. Electron. 38, 69 (1975).Google Scholar
Ribes, G., Mitard, J., Denais, M., Bruyere, S., Monsieur, F., Parthasarathy, C., Vincent, E., and Ghibaudo, G.: Review on high-k dielectrics reliability issues. IEEE Trans. Device Mater. Reliab. 5, 5 (2005).Google Scholar
Wu, T-L., Marcon, D., Zahid, M.B., Van Hove, M., Decoutere, S., and Groeseneken, G.: Comprehensive investigation of on-state stress on D-mode AlGaN/GaN MIS-HEMTs. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California, 2013); pp. 3C5C.Google Scholar
Alam, M.A., Weir, B.E., and Silverman, P.J.: A study of soft and hard breakdown-part I: Analysis of statistical percolation conductance. IEEE Trans. Electron Devices 49, 232 (2002).Google Scholar
Alam, M.A., Weir, B.E., and Silverman, P.J.: A study of soft and hard breakdown-part II: Principles of area, thickness, and voltage scaling. IEEE Trans. Electron Devices 49, 239 (2002).Google Scholar
Li, X., Tung, C.H., Pey, K.L., and Lo, V.L.: The chemistry of gate dielectric breakdown. In IEEE International Electron Devices Meeting (IEEE, San Francisco California, 2008); pp. 14.Google Scholar
Warnock, S. and del Alamo, J.A.: Stress and characterization strategies to assess oxide breakdown in high-voltage GaN field-effect transistors. In Compound Semiconductor Manufacturing Technology Conference (CS MANTECH, Scottsdale, Arizona, 2015); pp. 311314.Google Scholar
Hua, M., Liu, C., Yang, S., Liu, S., Fu, K., Dong, Z., Cai, Y., Zhang, B., and Chen, K.J.: Characterization of leakage and reliability of SiN x gate dielectric by low-pressure chemical vapor deposition for GaN-based MIS-HEMTs. IEEE Trans. Electron Devices 62, 3215 (2015).CrossRefGoogle Scholar
Warnock, S. and del Alamo, J.A.: Progressive breakdown in high-voltage GaN MIS-HEMTs. In IEEE International Reliability Physics Symposium (IEEE, Pasadena, California, 2016); pp. 4A6A.Google Scholar
Huang, X., Liu, Z., Li, Q., and Lee, F.C.: Evaluation and application of 600 V GaN HEMT in cascode structure. IEEE Trans. Power Electron. 29, 2453 (2014).Google Scholar
Meneghini, M., Rossetto, I., De Santi, C., Rampazzo, R., Tajalli, A., Barbato, A., Ruzzarin, M., Borga, M., Canato, E., Zanoni, E., and Meneghesso, G.: Reliability and failure analysis in power GaN-HEMTs: An overview. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California 2017); pp. 3B-2.13B-2.8.Google Scholar
Baliga, B.J.: Gallium nitride devices for power electronic applications. Semicond. Sci. Technol. 28, 074011 (2013).CrossRefGoogle Scholar
Marino, F.A., Bisi, D., Meneghini, M., Verzellesi, G., Zanoni, E., Van Hove, M., You, S., Decoutere, S., Marcon, D., Stoffels, S., Ronchi, N., and Meneghesso, G.: Analysis of off-state leakage mechanisms in GaN-based MIS-HEMTs: Experimental data and numerical simulation. Solid-State Electron. 113, 9 (2015).Google Scholar
Meneghini, M., Rossetto, I., Hurkx, F., Sonsky, J., Croon, J.A., Meneghesso, G., and Zanoni, E.: Extensive investigation of time-dependent breakdown of GaN-HEMTs submitted to off-state stress. IEEE Trans. Electron Devices 62, 2549 (2015).Google Scholar
Wolters, D.R. and van der Schoot, J.J.: Dielectric breakdown in MOS devices, part I: Defect-related and intrinsic breakdown. Philips J. Res. 45, 115 (1985).Google Scholar
Demirtas, S., Joh, J., and del Alamo, J.A.: High voltage degradation of GaN high electron mobility transistors on silicon substrate. Microelectron. Reliab. 50, 758 (2010).Google Scholar
Degraeve, R., Kauerauf, T., Cho, M., Zahid, M., Ragnarsson, L-A., Brunco, D.P., Kaczer, B., Roussel, P., De Gendt, S., and Groeseneken, G.: Degradation and breakdown of 0.9 nm EOT SiO/sub 2/ ALD HfO/sub 2/metal gate stacks under positive constant voltage stress. In IEEE International Electron Devices Meeting (IEEE, Washington, D.C., 2005); pp. 408411.Google Scholar
Degraeve, R., Kaczer, B., and Groeseneken, G.: Degradation and breakdown in thin oxide layers: Mechanisms, models and reliability prediction. Microelectron. Reliab. 39, 1445 (1999).Google Scholar
Palumbo, F., Eizenberg, M., and Lombardo, S.: General features of progressive breakdown in gate oxides: A compact model. In IEEE International Reliability Physics Symposium (2015); pp. 5A.1.15A.1.6.Google Scholar
Wu, E.Y., Stathis, J.H., and Han, L-K.: Ultra-thin oxide reliability for ULSI applications. Semicond. Sci. Technol. 15(5), 425 (2000).Google Scholar
Bersuker, G., Chowdhury, N., Young, C., Heh, D., Misra, D., and Choi, R.: Progressive breakdown characteristics of high-k/metal gate stacks. In IEEE International Reliability Physics Symposium (IEEE, Phoenix, Arizona, 2007); pp. 4954.Google Scholar
Guo, A. and del Alamo, J.A.: Positive-bias temperature instability (PBTI) of GaN MOSFETs. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California, 2015); pp. 6C.5.16C.5.7.Google Scholar
Crupi, F., Degraeve, R., Groeseneken, G., Nigam, T., and Maes, H.E.: On the properties of the gate and substrate current after soft breakdown in ultrathin oxide layers. IEEE Trans. Electron Devices 45, 2329 (1998).CrossRefGoogle Scholar
Sune, J., Wu, E.Y., Jiménez, D., Vollertsen, R.P., and Miranda, E.: Understanding soft and hard breakdown statistics, prevalence ratios and energy dissipation during breakdown runaway. In IEEE International Electron Devices Meeting (IEEE, Washington, D.C., 2001); pp. 117120.Google Scholar
Warnock, S. and del Alamo, J.A.: OFF-state TDDB in high-voltage GaN MIS-HEMTs. In IEEE International Reliability Physics Symposium (2017); pp. 4B-3.14B-3.6.Google Scholar
Jin, D., Joh, J., Krishnan, S., Tipirneni, N., Pendharkar, S., and del Alamo, J.A.: Total current collapse in high-voltage GaN MIS-HEMTs induced by Zener trapping. In IEEE International Electron Devices Meeting (IEEE, Washington D.C., 2013); pp. 148151.Google Scholar
Demirtas, S. and del Alamo, J.A.: Effect of trapping on the critical voltage for degradation in GaN high electron mobility transistors. In IEEE International Reliability Physics Symposium (IEEE, Anaheim, California, 2010); pp. 134138.Google Scholar
Lagger, P., Reiner, M., Pogany, D., and Ostermaier, C.: Comprehensive study of the complex dynamics of forward bias-induced threshold voltage drifts in GaN based MIS-HEMTs by stress/recovery experiments. IEEE Trans. Electron Devices 61, 1022 (2014).CrossRefGoogle Scholar
Lagger, P., Donsa, S., Spreitzer, P., Pobegen, G., Reiner, M., Naharashi, H., Mohamed, J., Mosslacher, H., Prechtl, G., Pogany, D., and Ostermaier, C.: Thermal activation of PBTI-related stress and recovery processes in GaN MIS-HEMTs using on-wafer heaters. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California, 2015); pp. 6C.2.16C.2.7.Google Scholar
Stradiotto, R., Pobegen, G., Ostermaier, C., and Grasser, T.: On the fly characterization of charge trapping phenomena at GaN/dielectric and GaN/AlGaN/dielectric interfaces using impedance measurements. In IEEE Solid State Device Research Conference (IEEE, Sapporo, Japan, 2015); pp. 7275.Google Scholar
Jin, D. and del Alamo, J.A.: Methodology for the study of dynamic on-resistance in high-voltage GaN field-effect transistors. IEEE Trans. Electron Devices 60, 3190 (2013).Google Scholar
Alam, M.A., Bude, J., and Ghetti, A.: Field acceleration for oxide breakdown—Can an accurate anode hole injection model resolve the E vs. 1/E controversy? In IEEE International Reliability Physics Symposium (IEEE, San Jose, California, 2000); pp. 2126.Google Scholar
Conley, J.F., Lenahan, P.M., Evans, H.L., Lowry, R.K., and Morthorst, T.J.: Observation and electronic characterization of two E′ center charge traps in conventionally processed thermal SiO2 on Si. Appl. Phys. Lett. 65, 2281 (1994).CrossRefGoogle Scholar
Conley, J.F., Lenahan, P.M., Evans, H.L., Lowry, R.K., and Morthorst, T.J.: Electron-spin-resonance evidence for an impurity-related E′-like hole trapping defect in thermally grown SiO2 on Si. J. Appl. Phys. 76, 8186 (1994).Google Scholar
Kang, A.Y., Lenahan, P.M., and Conley, J.F.: Electron spin resonance observation of trapped electron centers in atomic-layer-deposited hafnium oxide on Si. Appl. Phys. Lett. 83, 3407 (2003).CrossRefGoogle Scholar
Kimura, M.: Oxide breakdown mechanism and quantum physical chemistry for time-dependent dielectric breakdown. In IEEE International Reliability Physics Symposium (IEEE, Denver, Colorado, 1997); pp. 190200.Google Scholar
Li, X., Tung, C.H., and Pey, K.L.: The nature of dielectric breakdown. Appl. Phys. Lett. 93, 072903 (2008).Google Scholar
McPherson, J.W.: Determination of the nature of molecular bonding in silica from time-dependent dielectric breakdown data. J. Appl. Phys. 95, 8101 (2004).CrossRefGoogle Scholar
McPherson, J.W., Reddy, V.K., and Mogul, H.C.: Field-enhanced Si–Si bond-breakage mechanism for time-dependent dielectric breakdown in thin-film SiO2 dielectrics. Appl. Phys. Lett. 71, 1101 (1997).Google Scholar
McPherson, J.W., Khamankar, R.B., and Shanware, A.: Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics. J. Appl. Phys. 88, 5351 (2000).Google Scholar
Joh, J. and del Alamo, J.A.: A current-transient methodology for trap analysis for GaN high electron mobility transistors. IEEE Trans. Electron Devices 58, 132 (2011).Google Scholar
Ikeda, N., Niiyama, Y., Kambayashi, H., Sato, Y., Nomura, T., Kato, S., and Yoshida, S.: GaN power transistors on Si substrates for switching applications. Proc. IEEE 98, 1151 (2010).Google Scholar
Wu, Y. and del Alamo, J.A.: Electrical degradation of InAlN/GaN HEMTs operating under on conditions. IEEE Trans. Electron Devices 63, 3487 (2016).Google Scholar
Guo, A. and del Alamo, J.A.: Unified mechanism for positive- and negative-bias temperature instability in GaN MOSFETs. IEEE Trans. Electron Devices 64, 2142 (2017).Google Scholar
Franco, J., Alian, A., Kaczer, B., Lin, D., Ivanov, T., Pourghaderi, A., Martens, K., Mols, Y., Zhou, D., Waldron, N., Sioncke, S., Kauerauf, T., Collaert, N., Thean, A., Heyns, M., and Groeseneken, G.: Suitability of high-k gate oxides for II–V devices: A PBTI study in In0.53Ga0.47As devices with Al2O3 . In IEEE International Reliability Physics Symposium (IEEE, Waikoloa, Hawaii 2014); pp. 6A.2.16A.2.6.Google Scholar
Wu, T-L., Franco, J., Marcon, D., De Jaeger, B., Bakeroot, B., Stoffels, S., Van Hove, M., Groeseneken, G., and Decoutere, S.: Toward understanding positive bias temperature instability in fully recessed-gate GaN MISFETs. IEEE Trans. Electron Devices 63, 1853 (2016).Google Scholar
Cho, M., Lee, J-D., Aoulaiche, M., Kaczer, B., Roussel, P., Kauerauf, T., Degraeve, R., Franco, J., Ragnarsson, L-Å., and Groeseneken, G.: Insight into N/PBTI mechanisms in sub-1-nm-EOT devices. IEEE Trans. Electron Devices 59, 2042 (2012).Google Scholar
Guo, A. and del Alamo, J.A.: Negative-bias temperature instability of GaN MOSFETs. In IEEE International Reliability Physics Symposium (IEEE, Pasadena, California 2016); pp. 4A.14A.1.6.Google Scholar
Wrachien, N., Cester, A., Wu, Y.Q., Ye, P.D., Zanoni, E., and Meneghesso, G.: Effects of positive and negative stresses on III–V MOSFETs with Al2O3 gate dielectric. IEEE Electron Device Lett. 32, 488 (2011).CrossRefGoogle Scholar